Loading…

Individual quality overwrites carry‐over effects across the annual cycle of a long‐distance migrant

In seasonal environments, the fitness of animals depends upon the successful integration of life‐history stages throughout their annual cycle. Failing to do so can lead to negative carry‐over effects where individuals are transitioning into the next season in different states, consequently affecting...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of animal ecology 2024-09, Vol.93 (9), p.1197-1211
Main Authors: Léandri‐Breton, Don‐Jean, Elliott, Kyle H., Tarroux, Arnaud, Moe, Børge, Jouanneau, William, Amélineau, Françoise, Angelier, Frédéric, Blévin, Pierre, Sandøy Bråthen, Vegard, Fauchald, Per, Gabrielsen, Geir W., Goutte, Aurélie, Parenteau, Charline, Tartu, Sabrina, Legagneux, Pierre, Chastel, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In seasonal environments, the fitness of animals depends upon the successful integration of life‐history stages throughout their annual cycle. Failing to do so can lead to negative carry‐over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry‐over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.e. ‘quality’), leading to cross‐seasonal consistency in individual performance. Here we investigated the relative importance of carry‐over effects and individual quality in determining cross‐seasonal interactions and consequences for breeding success over the full annual cycle of a migratory seabird (black‐legged kittiwake Rissa tridactyla). We monitored the reproduction and annual movement of kittiwakes over 13 years using geolocators to estimate their breeding success, distribution and winter energy expenditure. We combined this with an experimental approach (clutch removal experiment, 2 years) to manipulate the reproductive effort irrespective of individual quality. Piecewise path analyses showed that successful breeders reproduced earlier and were more likely to breed successfully again the following year. This positive interaction among consecutive breeding stages disappeared after controlling for individual quality, suggesting that quality was dominant in determining seasonal interactions. Moreover, controlling experimentally for individual quality revealed underlying carry‐over effects that were otherwise masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of reproduction. We highlight the need to combine an experimental approach along with long‐term data while assessing apparent carry‐over effects in wild animals, and their potential impact on fitness and population demography. Combining 13 years of breeding and tracking data with an experimental approach revealed that individual quality was dominant in determining seasonal interactions in a long‐lived seabird. However, underlying carry‐over effects were also present, although masked by quality, with breeding costs paid in higher energy expenditure and delayed onset of breeding.
ISSN:0021-8790
1365-2656
1365-2656
DOI:10.1111/1365-2656.14125