Loading…

Faster and enhanced inclusion-minimal cograph completion

We design two incremental algorithms for computing an inclusion-minimal completion of an arbitrary graph into a cograph. The first one is able to do so while providing an additional property which is crucial in practice to obtain inclusion-minimal completions using as few edges as possible : it is a...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2021-01, Vol.288, p.138-151
Main Authors: Crespelle, Christophe, Lokshtanov, Daniel, Phan, Thi Ha Duong, Thierry, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3
cites cdi_FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3
container_end_page 151
container_issue
container_start_page 138
container_title Discrete Applied Mathematics
container_volume 288
creator Crespelle, Christophe
Lokshtanov, Daniel
Phan, Thi Ha Duong
Thierry, Eric
description We design two incremental algorithms for computing an inclusion-minimal completion of an arbitrary graph into a cograph. The first one is able to do so while providing an additional property which is crucial in practice to obtain inclusion-minimal completions using as few edges as possible : it is able to compute a minimum-cardinality completion of the neighbourhood of the new vertex introduced at each incremental step. It runs in O(n+m′) time, where m′ is the number of edges in the completed graph. This matches the complexity of the algorithm in (Lokshtanov et al., 2010) and positively answers one of their open questions. Our second algorithm improves the complexity of inclusion-minimal completion to O(n+mlog2n) when the additional property above is not required. Moreover, we prove that many very sparse graphs, having only O(n) edges, require Ω(n2) edges in any of their cograph completions. For these graphs, which include many of those encountered in applications, the improvement we obtain on the complexity scales as O(n∕log2n).
doi_str_mv 10.1016/j.dam.2020.08.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04633558v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20303693</els_id><sourcerecordid>2505411311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG8FTx5aZ9Jtm-BpWVxXWPCi4C2MSdZN6ceadBf896ZUPHqZYZLnnY-XsRuEDAHL-zoz1GYcOGQgMgB-wmYoKp6WVYWnbBaZMuUo3s_ZRQg1AGCsZkysKAzWJ9SZxHY76rQ1iet0cwiu79LWda6lJtH9p6f9LuZ239ghfl2xsy01wV7_5kv2tnp8Xa7TzcvT83KxSXVeyCGVUpAWhEIYGSNYXVWGywKKwghNusScbyW30oxAWUmaFyQp_4iXGNCUX7K7qe-OGrX3cRv_rXpyar3YqPEN5mWeF4U4YmRvJ3bv-6-DDYOq-4Pv4nqKx4lzxBxHCidK-z4Eb7d_bRHUaKaqVTRTjWYqECqaGTUPk8bGU4_OehW0s6NZzls9KNO7f9Q_5EJ6xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505411311</pqid></control><display><type>article</type><title>Faster and enhanced inclusion-minimal cograph completion</title><source>ScienceDirect Journals</source><creator>Crespelle, Christophe ; Lokshtanov, Daniel ; Phan, Thi Ha Duong ; Thierry, Eric</creator><creatorcontrib>Crespelle, Christophe ; Lokshtanov, Daniel ; Phan, Thi Ha Duong ; Thierry, Eric</creatorcontrib><description>We design two incremental algorithms for computing an inclusion-minimal completion of an arbitrary graph into a cograph. The first one is able to do so while providing an additional property which is crucial in practice to obtain inclusion-minimal completions using as few edges as possible : it is able to compute a minimum-cardinality completion of the neighbourhood of the new vertex introduced at each incremental step. It runs in O(n+m′) time, where m′ is the number of edges in the completed graph. This matches the complexity of the algorithm in (Lokshtanov et al., 2010) and positively answers one of their open questions. Our second algorithm improves the complexity of inclusion-minimal completion to O(n+mlog2n) when the additional property above is not required. Moreover, we prove that many very sparse graphs, having only O(n) edges, require Ω(n2) edges in any of their cograph completions. For these graphs, which include many of those encountered in applications, the improvement we obtain on the complexity scales as O(n∕log2n).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.08.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Cograph ; Complexity ; Computer Science ; Edge modification ; Graph theory ; Graphs ; Minimal completion</subject><ispartof>Discrete Applied Mathematics, 2021-01, Vol.288, p.138-151</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3</citedby><cites>FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3</cites><orcidid>0000-0002-3166-9212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04633558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crespelle, Christophe</creatorcontrib><creatorcontrib>Lokshtanov, Daniel</creatorcontrib><creatorcontrib>Phan, Thi Ha Duong</creatorcontrib><creatorcontrib>Thierry, Eric</creatorcontrib><title>Faster and enhanced inclusion-minimal cograph completion</title><title>Discrete Applied Mathematics</title><description>We design two incremental algorithms for computing an inclusion-minimal completion of an arbitrary graph into a cograph. The first one is able to do so while providing an additional property which is crucial in practice to obtain inclusion-minimal completions using as few edges as possible : it is able to compute a minimum-cardinality completion of the neighbourhood of the new vertex introduced at each incremental step. It runs in O(n+m′) time, where m′ is the number of edges in the completed graph. This matches the complexity of the algorithm in (Lokshtanov et al., 2010) and positively answers one of their open questions. Our second algorithm improves the complexity of inclusion-minimal completion to O(n+mlog2n) when the additional property above is not required. Moreover, we prove that many very sparse graphs, having only O(n) edges, require Ω(n2) edges in any of their cograph completions. For these graphs, which include many of those encountered in applications, the improvement we obtain on the complexity scales as O(n∕log2n).</description><subject>Algorithms</subject><subject>Cograph</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Edge modification</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Minimal completion</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG8FTx5aZ9Jtm-BpWVxXWPCi4C2MSdZN6ceadBf896ZUPHqZYZLnnY-XsRuEDAHL-zoz1GYcOGQgMgB-wmYoKp6WVYWnbBaZMuUo3s_ZRQg1AGCsZkysKAzWJ9SZxHY76rQ1iet0cwiu79LWda6lJtH9p6f9LuZ239ghfl2xsy01wV7_5kv2tnp8Xa7TzcvT83KxSXVeyCGVUpAWhEIYGSNYXVWGywKKwghNusScbyW30oxAWUmaFyQp_4iXGNCUX7K7qe-OGrX3cRv_rXpyar3YqPEN5mWeF4U4YmRvJ3bv-6-DDYOq-4Pv4nqKx4lzxBxHCidK-z4Eb7d_bRHUaKaqVTRTjWYqECqaGTUPk8bGU4_OehW0s6NZzls9KNO7f9Q_5EJ6xQ</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Crespelle, Christophe</creator><creator>Lokshtanov, Daniel</creator><creator>Phan, Thi Ha Duong</creator><creator>Thierry, Eric</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3166-9212</orcidid></search><sort><creationdate>20210115</creationdate><title>Faster and enhanced inclusion-minimal cograph completion</title><author>Crespelle, Christophe ; Lokshtanov, Daniel ; Phan, Thi Ha Duong ; Thierry, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cograph</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Edge modification</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Minimal completion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crespelle, Christophe</creatorcontrib><creatorcontrib>Lokshtanov, Daniel</creatorcontrib><creatorcontrib>Phan, Thi Ha Duong</creatorcontrib><creatorcontrib>Thierry, Eric</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crespelle, Christophe</au><au>Lokshtanov, Daniel</au><au>Phan, Thi Ha Duong</au><au>Thierry, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster and enhanced inclusion-minimal cograph completion</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>288</volume><spage>138</spage><epage>151</epage><pages>138-151</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We design two incremental algorithms for computing an inclusion-minimal completion of an arbitrary graph into a cograph. The first one is able to do so while providing an additional property which is crucial in practice to obtain inclusion-minimal completions using as few edges as possible : it is able to compute a minimum-cardinality completion of the neighbourhood of the new vertex introduced at each incremental step. It runs in O(n+m′) time, where m′ is the number of edges in the completed graph. This matches the complexity of the algorithm in (Lokshtanov et al., 2010) and positively answers one of their open questions. Our second algorithm improves the complexity of inclusion-minimal completion to O(n+mlog2n) when the additional property above is not required. Moreover, we prove that many very sparse graphs, having only O(n) edges, require Ω(n2) edges in any of their cograph completions. For these graphs, which include many of those encountered in applications, the improvement we obtain on the complexity scales as O(n∕log2n).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.08.002</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3166-9212</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-01, Vol.288, p.138-151
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_04633558v1
source ScienceDirect Journals
subjects Algorithms
Cograph
Complexity
Computer Science
Edge modification
Graph theory
Graphs
Minimal completion
title Faster and enhanced inclusion-minimal cograph completion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20and%20enhanced%20inclusion-minimal%20cograph%20completion&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Crespelle,%20Christophe&rft.date=2021-01-15&rft.volume=288&rft.spage=138&rft.epage=151&rft.pages=138-151&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.08.002&rft_dat=%3Cproquest_hal_p%3E2505411311%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-998ac8a188d9a180ec77d295055d8cac6132f92e9d8d9a679a45a9a3b020d0ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505411311&rft_id=info:pmid/&rfr_iscdi=true