Loading…

Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet

AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by th...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-07, Vol.13 (14), p.2709
Main Authors: Leveugle, Régis, Cogney, Arthur, Gah El Hilal, Ahmed Baba, Lailler, Tristan, Pieau, Maxime
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693
container_end_page
container_issue 14
container_start_page 2709
container_title Electronics (Basel)
container_volume 13
creator Leveugle, Régis
Cogney, Arthur
Gah El Hilal, Ahmed Baba
Lailler, Tristan
Pieau, Maxime
description AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.
doi_str_mv 10.3390/electronics13142709
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04645156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803768619</galeid><sourcerecordid>A803768619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRsGh_gZeAJw-t-djubrwti9pCqQc_rmGandQt7aYmqdp_b9ot4sHMIcPL8w7vMElyxehQCElvcYU6ONs22jPBUp5TeZL0OM3lQHLJT__050nf-yWNTzJRCNpLzBhc_QUOSal1nOQgNLYl0Nak3Gyc_W7WnWINqWYzUtn1ZhsOkr8jFXgkz2Fb78jBRCZtwAU68obOH11TnGG4TM4MrDz2j_9F8vpw_1KNB9Onx0lVTgeaCxoGwpiRqWkha8w1FVAL0JrnyNg8y6XJDNNzA7JgIGRaGM515CEFkwHlOpPiIrnp5r7DSm1cDO92ykKjxuVU7TWaZumIjbJPFtnrjo1rfmzRB7W0W9fGeErQIs1TkeZ7athRC1ihalpjgwMdq8Z1o22Lpol6WVCRZ0XG9hFEZ9DOeu_Q_OZgVO0Ppv45mPgBxbeLog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084743471</pqid></control><display><type>article</type><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</creator><creatorcontrib>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</creatorcontrib><description>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13142709</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acceleration ; Accuracy ; Approximation ; Artificial Intelligence ; Artificial neural networks ; Autonomous vehicles ; Case studies ; Computation ; Computational linguistics ; Computer Science ; Constraints ; Critical path ; Embedded systems ; Energy consumption ; Energy efficiency ; Engineering Sciences ; Fault tolerance ; Field programmable gate arrays ; Hardware ; Integers ; Language processing ; Micro and nanotechnologies ; Microelectronics ; Natural language interfaces ; Neural and Evolutionary Computing ; Neural networks ; Pattern recognition ; Power consumption ; Software</subject><ispartof>Electronics (Basel), 2024-07, Vol.13 (14), p.2709</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</cites><orcidid>0009-0006-8113-4183 ; 0000-0001-8664-412X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084743471/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084743471?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04645156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leveugle, Régis</creatorcontrib><creatorcontrib>Cogney, Arthur</creatorcontrib><creatorcontrib>Gah El Hilal, Ahmed Baba</creatorcontrib><creatorcontrib>Lailler, Tristan</creatorcontrib><creatorcontrib>Pieau, Maxime</creatorcontrib><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><title>Electronics (Basel)</title><description>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicles</subject><subject>Case studies</subject><subject>Computation</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Critical path</subject><subject>Embedded systems</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Engineering Sciences</subject><subject>Fault tolerance</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Integers</subject><subject>Language processing</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Natural language interfaces</subject><subject>Neural and Evolutionary Computing</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Power consumption</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkU1LAzEQhhdRsGh_gZeAJw-t-djubrwti9pCqQc_rmGandQt7aYmqdp_b9ot4sHMIcPL8w7vMElyxehQCElvcYU6ONs22jPBUp5TeZL0OM3lQHLJT__050nf-yWNTzJRCNpLzBhc_QUOSal1nOQgNLYl0Nak3Gyc_W7WnWINqWYzUtn1ZhsOkr8jFXgkz2Fb78jBRCZtwAU68obOH11TnGG4TM4MrDz2j_9F8vpw_1KNB9Onx0lVTgeaCxoGwpiRqWkha8w1FVAL0JrnyNg8y6XJDNNzA7JgIGRaGM515CEFkwHlOpPiIrnp5r7DSm1cDO92ykKjxuVU7TWaZumIjbJPFtnrjo1rfmzRB7W0W9fGeErQIs1TkeZ7athRC1ihalpjgwMdq8Z1o22Lpol6WVCRZ0XG9hFEZ9DOeu_Q_OZgVO0Ppv45mPgBxbeLog</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Leveugle, Régis</creator><creator>Cogney, Arthur</creator><creator>Gah El Hilal, Ahmed Baba</creator><creator>Lailler, Tristan</creator><creator>Pieau, Maxime</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0006-8113-4183</orcidid><orcidid>https://orcid.org/0000-0001-8664-412X</orcidid></search><sort><creationdate>20240701</creationdate><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><author>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicles</topic><topic>Case studies</topic><topic>Computation</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Critical path</topic><topic>Embedded systems</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Engineering Sciences</topic><topic>Fault tolerance</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Integers</topic><topic>Language processing</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Natural language interfaces</topic><topic>Neural and Evolutionary Computing</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Power consumption</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leveugle, Régis</creatorcontrib><creatorcontrib>Cogney, Arthur</creatorcontrib><creatorcontrib>Gah El Hilal, Ahmed Baba</creatorcontrib><creatorcontrib>Lailler, Tristan</creatorcontrib><creatorcontrib>Pieau, Maxime</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leveugle, Régis</au><au>Cogney, Arthur</au><au>Gah El Hilal, Ahmed Baba</au><au>Lailler, Tristan</au><au>Pieau, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>14</issue><spage>2709</spage><pages>2709-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13142709</doi><orcidid>https://orcid.org/0009-0006-8113-4183</orcidid><orcidid>https://orcid.org/0000-0001-8664-412X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-07, Vol.13 (14), p.2709
issn 2079-9292
2079-9292
language eng
recordid cdi_hal_primary_oai_HAL_hal_04645156v1
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acceleration
Accuracy
Approximation
Artificial Intelligence
Artificial neural networks
Autonomous vehicles
Case studies
Computation
Computational linguistics
Computer Science
Constraints
Critical path
Embedded systems
Energy consumption
Energy efficiency
Engineering Sciences
Fault tolerance
Field programmable gate arrays
Hardware
Integers
Language processing
Micro and nanotechnologies
Microelectronics
Natural language interfaces
Neural and Evolutionary Computing
Neural networks
Pattern recognition
Power consumption
Software
title Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Acceleration%20and%20Approximation%20of%20CNN%20Computations:%20Case%20Study%20on%20an%20Integer%20Version%20of%20LeNet&rft.jtitle=Electronics%20(Basel)&rft.au=Leveugle,%20R%C3%A9gis&rft.date=2024-07-01&rft.volume=13&rft.issue=14&rft.spage=2709&rft.pages=2709-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13142709&rft_dat=%3Cgale_hal_p%3EA803768619%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084743471&rft_id=info:pmid/&rft_galeid=A803768619&rfr_iscdi=true