Loading…
Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet
AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by th...
Saved in:
Published in: | Electronics (Basel) 2024-07, Vol.13 (14), p.2709 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693 |
container_end_page | |
container_issue | 14 |
container_start_page | 2709 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Leveugle, Régis Cogney, Arthur Gah El Hilal, Ahmed Baba Lailler, Tristan Pieau, Maxime |
description | AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains. |
doi_str_mv | 10.3390/electronics13142709 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04645156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803768619</galeid><sourcerecordid>A803768619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRsGh_gZeAJw-t-djubrwti9pCqQc_rmGandQt7aYmqdp_b9ot4sHMIcPL8w7vMElyxehQCElvcYU6ONs22jPBUp5TeZL0OM3lQHLJT__050nf-yWNTzJRCNpLzBhc_QUOSal1nOQgNLYl0Nak3Gyc_W7WnWINqWYzUtn1ZhsOkr8jFXgkz2Fb78jBRCZtwAU68obOH11TnGG4TM4MrDz2j_9F8vpw_1KNB9Onx0lVTgeaCxoGwpiRqWkha8w1FVAL0JrnyNg8y6XJDNNzA7JgIGRaGM515CEFkwHlOpPiIrnp5r7DSm1cDO92ykKjxuVU7TWaZumIjbJPFtnrjo1rfmzRB7W0W9fGeErQIs1TkeZ7athRC1ihalpjgwMdq8Z1o22Lpol6WVCRZ0XG9hFEZ9DOeu_Q_OZgVO0Ppv45mPgBxbeLog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084743471</pqid></control><display><type>article</type><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</creator><creatorcontrib>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</creatorcontrib><description>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13142709</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acceleration ; Accuracy ; Approximation ; Artificial Intelligence ; Artificial neural networks ; Autonomous vehicles ; Case studies ; Computation ; Computational linguistics ; Computer Science ; Constraints ; Critical path ; Embedded systems ; Energy consumption ; Energy efficiency ; Engineering Sciences ; Fault tolerance ; Field programmable gate arrays ; Hardware ; Integers ; Language processing ; Micro and nanotechnologies ; Microelectronics ; Natural language interfaces ; Neural and Evolutionary Computing ; Neural networks ; Pattern recognition ; Power consumption ; Software</subject><ispartof>Electronics (Basel), 2024-07, Vol.13 (14), p.2709</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</cites><orcidid>0009-0006-8113-4183 ; 0000-0001-8664-412X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084743471/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084743471?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04645156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leveugle, Régis</creatorcontrib><creatorcontrib>Cogney, Arthur</creatorcontrib><creatorcontrib>Gah El Hilal, Ahmed Baba</creatorcontrib><creatorcontrib>Lailler, Tristan</creatorcontrib><creatorcontrib>Pieau, Maxime</creatorcontrib><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><title>Electronics (Basel)</title><description>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicles</subject><subject>Case studies</subject><subject>Computation</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Critical path</subject><subject>Embedded systems</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Engineering Sciences</subject><subject>Fault tolerance</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Integers</subject><subject>Language processing</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Natural language interfaces</subject><subject>Neural and Evolutionary Computing</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Power consumption</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkU1LAzEQhhdRsGh_gZeAJw-t-djubrwti9pCqQc_rmGandQt7aYmqdp_b9ot4sHMIcPL8w7vMElyxehQCElvcYU6ONs22jPBUp5TeZL0OM3lQHLJT__050nf-yWNTzJRCNpLzBhc_QUOSal1nOQgNLYl0Nak3Gyc_W7WnWINqWYzUtn1ZhsOkr8jFXgkz2Fb78jBRCZtwAU68obOH11TnGG4TM4MrDz2j_9F8vpw_1KNB9Onx0lVTgeaCxoGwpiRqWkha8w1FVAL0JrnyNg8y6XJDNNzA7JgIGRaGM515CEFkwHlOpPiIrnp5r7DSm1cDO92ykKjxuVU7TWaZumIjbJPFtnrjo1rfmzRB7W0W9fGeErQIs1TkeZ7athRC1ihalpjgwMdq8Z1o22Lpol6WVCRZ0XG9hFEZ9DOeu_Q_OZgVO0Ppv45mPgBxbeLog</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Leveugle, Régis</creator><creator>Cogney, Arthur</creator><creator>Gah El Hilal, Ahmed Baba</creator><creator>Lailler, Tristan</creator><creator>Pieau, Maxime</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0006-8113-4183</orcidid><orcidid>https://orcid.org/0000-0001-8664-412X</orcidid></search><sort><creationdate>20240701</creationdate><title>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</title><author>Leveugle, Régis ; Cogney, Arthur ; Gah El Hilal, Ahmed Baba ; Lailler, Tristan ; Pieau, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicles</topic><topic>Case studies</topic><topic>Computation</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Critical path</topic><topic>Embedded systems</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Engineering Sciences</topic><topic>Fault tolerance</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Integers</topic><topic>Language processing</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Natural language interfaces</topic><topic>Neural and Evolutionary Computing</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Power consumption</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leveugle, Régis</creatorcontrib><creatorcontrib>Cogney, Arthur</creatorcontrib><creatorcontrib>Gah El Hilal, Ahmed Baba</creatorcontrib><creatorcontrib>Lailler, Tristan</creatorcontrib><creatorcontrib>Pieau, Maxime</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leveugle, Régis</au><au>Cogney, Arthur</au><au>Gah El Hilal, Ahmed Baba</au><au>Lailler, Tristan</au><au>Pieau, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>14</issue><spage>2709</spage><pages>2709-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13142709</doi><orcidid>https://orcid.org/0009-0006-8113-4183</orcidid><orcidid>https://orcid.org/0000-0001-8664-412X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-07, Vol.13 (14), p.2709 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04645156v1 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acceleration Accuracy Approximation Artificial Intelligence Artificial neural networks Autonomous vehicles Case studies Computation Computational linguistics Computer Science Constraints Critical path Embedded systems Energy consumption Energy efficiency Engineering Sciences Fault tolerance Field programmable gate arrays Hardware Integers Language processing Micro and nanotechnologies Microelectronics Natural language interfaces Neural and Evolutionary Computing Neural networks Pattern recognition Power consumption Software |
title | Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Acceleration%20and%20Approximation%20of%20CNN%20Computations:%20Case%20Study%20on%20an%20Integer%20Version%20of%20LeNet&rft.jtitle=Electronics%20(Basel)&rft.au=Leveugle,%20R%C3%A9gis&rft.date=2024-07-01&rft.volume=13&rft.issue=14&rft.spage=2709&rft.pages=2709-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13142709&rft_dat=%3Cgale_hal_p%3EA803768619%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-3ff5fd089de7c03ad3acc27e11b679f6f1cbfa981a3948f22cf5fa4af6a02c693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084743471&rft_id=info:pmid/&rft_galeid=A803768619&rfr_iscdi=true |