Loading…

Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles

Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the different en...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2024-08, Vol.12 (24), p.n/a
Main Authors: Amouroux, Baptiste, Eftekhari, Ali, Roux, Clément, Micheau, Jean‐Claude, Roblin, Pierre, Pasturel, Mathieu, Gauffre, Fabienne, Würth, Christian, Resch‐Genger, Ute, Sliwa, Michel, Bouchet, Aude, Coudret, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2763-eef7bc648ae206b563d12a763aca9e22fcbcad1abf022c08f480a2f5fcf549663
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced optical materials
container_volume 12
creator Amouroux, Baptiste
Eftekhari, Ali
Roux, Clément
Micheau, Jean‐Claude
Roblin, Pierre
Pasturel, Mathieu
Gauffre, Fabienne
Würth, Christian
Resch‐Genger, Ute
Sliwa, Michel
Bouchet, Aude
Coudret, Christophe
description Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the different energy transfers at play in upconversion luminescence. Maintaining detectable emission despite the limited number of emitting ions and the high surface‐to‐volume ratio requires suitable particle architectures. Na(Gd‐Yb)F4:Tm3+ emissive sub‐3 nm diameter β‐phase UCNPs are prepared using a gadolinium‐rich composition in situ mixing of the precursors and a microwave high‐temperature cycling sequence allowing precise control of the particle size and dispersity. These cores are coated with a NaGdF4 inert shell to minimize the deleterious influence of surface quenching (SQ). Time‐resolved luminescence measurements combining standard NIR excitation of the Yb3+ sensitizer and direct UV excitation of the Tm3+ activator are performed to quantify cross relaxation and surface quenching processes. The fine tuning of the number of activators per particle via an optimized synthesis pathway along with the use of an appropriate excitation scheme enabled to provide an accurate analysis of the different mechanisms at play in these model nanoparticles and to characterize the structure of the core‐shell architecture. Reducing the size of upconversion nanoparticles to a few nanometers produces materials containing a very small number of emitters. This simplifies the analysis of the contributions of the different energy transfers at play in upconversion luminescence. The synthesis of these ultrasmall nanoparticles requires a sophisticated, optimized and reproducible protocol so that the size and crystallinity can be well controlled.
doi_str_mv 10.1002/adom.202303283
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04645759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096434888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2763-eef7bc648ae206b563d12a763aca9e22fcbcad1abf022c08f480a2f5fcf549663</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhS0EElXpyhyJiSHFtzjJWLWFViowlM6W49iqq8QOcVuUjUfgEXgWHoUnISWosDH9t-8c_ToAXCI4RBDiG5G7coghJpDghJyAHkZpFCIYo9M__TkYeL-BELYDSWncA_NlY7dr5Y0PhM2DaWm8N84Gk8aK0kgfOB0sd9nn6xv5eLdlsKqks3tVf0MPwrpK1FsjC-UvwJkWhVeDn9oHq9vp03gWLh7v5uPRIpQ4ZiRUSseZZDQRCkOWRYzkCIv2IqRIFcZaZlLkSGQaYixhomkCBdaRljqiKWOkD64737UoeFWbUtQNd8Lw2WjBDztIGY3iKN2jlr3q2Kp2zzvlt3zjdrVt3-MEpowSmiRJSw07StbO-1rpoy2C_JAuP6TLj-m2grQTvJhCNf_QfDR5vP_VfgFonH9F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096434888</pqid></control><display><type>article</type><title>Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Amouroux, Baptiste ; Eftekhari, Ali ; Roux, Clément ; Micheau, Jean‐Claude ; Roblin, Pierre ; Pasturel, Mathieu ; Gauffre, Fabienne ; Würth, Christian ; Resch‐Genger, Ute ; Sliwa, Michel ; Bouchet, Aude ; Coudret, Christophe</creator><creatorcontrib>Amouroux, Baptiste ; Eftekhari, Ali ; Roux, Clément ; Micheau, Jean‐Claude ; Roblin, Pierre ; Pasturel, Mathieu ; Gauffre, Fabienne ; Würth, Christian ; Resch‐Genger, Ute ; Sliwa, Michel ; Bouchet, Aude ; Coudret, Christophe</creatorcontrib><description>Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the different energy transfers at play in upconversion luminescence. Maintaining detectable emission despite the limited number of emitting ions and the high surface‐to‐volume ratio requires suitable particle architectures. Na(Gd‐Yb)F4:Tm3+ emissive sub‐3 nm diameter β‐phase UCNPs are prepared using a gadolinium‐rich composition in situ mixing of the precursors and a microwave high‐temperature cycling sequence allowing precise control of the particle size and dispersity. These cores are coated with a NaGdF4 inert shell to minimize the deleterious influence of surface quenching (SQ). Time‐resolved luminescence measurements combining standard NIR excitation of the Yb3+ sensitizer and direct UV excitation of the Tm3+ activator are performed to quantify cross relaxation and surface quenching processes. The fine tuning of the number of activators per particle via an optimized synthesis pathway along with the use of an appropriate excitation scheme enabled to provide an accurate analysis of the different mechanisms at play in these model nanoparticles and to characterize the structure of the core‐shell architecture. Reducing the size of upconversion nanoparticles to a few nanometers produces materials containing a very small number of emitters. This simplifies the analysis of the contributions of the different energy transfers at play in upconversion luminescence. The synthesis of these ultrasmall nanoparticles requires a sophisticated, optimized and reproducible protocol so that the size and crystallinity can be well controlled.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202303283</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical Sciences ; Cross relaxation ; Emission ; Emitters ; Excitation ; Gadolinium ; Luminescence ; Nanoparticles ; or physical chemistry ; Quenching ; single‐emitter particles ; surface quenching rate constant ; Synthesis ; temperature cycling ; Theoretical and ; Thulium ; ultrasmall upconversion nanoparticles ; Upconversion ; Ytterbium</subject><ispartof>Advanced optical materials, 2024-08, Vol.12 (24), p.n/a</ispartof><rights>2024 The Author(s). Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2763-eef7bc648ae206b563d12a763aca9e22fcbcad1abf022c08f480a2f5fcf549663</cites><orcidid>0000-0002-0204-9727 ; 0000-0001-7334-5112 ; 0000-0002-5073-8180 ; 0000-0002-4765-8876 ; 0000-0002-0944-1115 ; 0000-0002-2172-9533 ; 0000-0001-8379-4878 ; 0000-0001-5707-4471 ; 0000-0002-1193-4306 ; 0009-0005-9557-0114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-04645759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Amouroux, Baptiste</creatorcontrib><creatorcontrib>Eftekhari, Ali</creatorcontrib><creatorcontrib>Roux, Clément</creatorcontrib><creatorcontrib>Micheau, Jean‐Claude</creatorcontrib><creatorcontrib>Roblin, Pierre</creatorcontrib><creatorcontrib>Pasturel, Mathieu</creatorcontrib><creatorcontrib>Gauffre, Fabienne</creatorcontrib><creatorcontrib>Würth, Christian</creatorcontrib><creatorcontrib>Resch‐Genger, Ute</creatorcontrib><creatorcontrib>Sliwa, Michel</creatorcontrib><creatorcontrib>Bouchet, Aude</creatorcontrib><creatorcontrib>Coudret, Christophe</creatorcontrib><title>Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles</title><title>Advanced optical materials</title><description>Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the different energy transfers at play in upconversion luminescence. Maintaining detectable emission despite the limited number of emitting ions and the high surface‐to‐volume ratio requires suitable particle architectures. Na(Gd‐Yb)F4:Tm3+ emissive sub‐3 nm diameter β‐phase UCNPs are prepared using a gadolinium‐rich composition in situ mixing of the precursors and a microwave high‐temperature cycling sequence allowing precise control of the particle size and dispersity. These cores are coated with a NaGdF4 inert shell to minimize the deleterious influence of surface quenching (SQ). Time‐resolved luminescence measurements combining standard NIR excitation of the Yb3+ sensitizer and direct UV excitation of the Tm3+ activator are performed to quantify cross relaxation and surface quenching processes. The fine tuning of the number of activators per particle via an optimized synthesis pathway along with the use of an appropriate excitation scheme enabled to provide an accurate analysis of the different mechanisms at play in these model nanoparticles and to characterize the structure of the core‐shell architecture. Reducing the size of upconversion nanoparticles to a few nanometers produces materials containing a very small number of emitters. This simplifies the analysis of the contributions of the different energy transfers at play in upconversion luminescence. The synthesis of these ultrasmall nanoparticles requires a sophisticated, optimized and reproducible protocol so that the size and crystallinity can be well controlled.</description><subject>Chemical Sciences</subject><subject>Cross relaxation</subject><subject>Emission</subject><subject>Emitters</subject><subject>Excitation</subject><subject>Gadolinium</subject><subject>Luminescence</subject><subject>Nanoparticles</subject><subject>or physical chemistry</subject><subject>Quenching</subject><subject>single‐emitter particles</subject><subject>surface quenching rate constant</subject><subject>Synthesis</subject><subject>temperature cycling</subject><subject>Theoretical and</subject><subject>Thulium</subject><subject>ultrasmall upconversion nanoparticles</subject><subject>Upconversion</subject><subject>Ytterbium</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAYhS0EElXpyhyJiSHFtzjJWLWFViowlM6W49iqq8QOcVuUjUfgEXgWHoUnISWosDH9t-8c_ToAXCI4RBDiG5G7coghJpDghJyAHkZpFCIYo9M__TkYeL-BELYDSWncA_NlY7dr5Y0PhM2DaWm8N84Gk8aK0kgfOB0sd9nn6xv5eLdlsKqks3tVf0MPwrpK1FsjC-UvwJkWhVeDn9oHq9vp03gWLh7v5uPRIpQ4ZiRUSseZZDQRCkOWRYzkCIv2IqRIFcZaZlLkSGQaYixhomkCBdaRljqiKWOkD64737UoeFWbUtQNd8Lw2WjBDztIGY3iKN2jlr3q2Kp2zzvlt3zjdrVt3-MEpowSmiRJSw07StbO-1rpoy2C_JAuP6TLj-m2grQTvJhCNf_QfDR5vP_VfgFonH9F</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Amouroux, Baptiste</creator><creator>Eftekhari, Ali</creator><creator>Roux, Clément</creator><creator>Micheau, Jean‐Claude</creator><creator>Roblin, Pierre</creator><creator>Pasturel, Mathieu</creator><creator>Gauffre, Fabienne</creator><creator>Würth, Christian</creator><creator>Resch‐Genger, Ute</creator><creator>Sliwa, Michel</creator><creator>Bouchet, Aude</creator><creator>Coudret, Christophe</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0204-9727</orcidid><orcidid>https://orcid.org/0000-0001-7334-5112</orcidid><orcidid>https://orcid.org/0000-0002-5073-8180</orcidid><orcidid>https://orcid.org/0000-0002-4765-8876</orcidid><orcidid>https://orcid.org/0000-0002-0944-1115</orcidid><orcidid>https://orcid.org/0000-0002-2172-9533</orcidid><orcidid>https://orcid.org/0000-0001-8379-4878</orcidid><orcidid>https://orcid.org/0000-0001-5707-4471</orcidid><orcidid>https://orcid.org/0000-0002-1193-4306</orcidid><orcidid>https://orcid.org/0009-0005-9557-0114</orcidid></search><sort><creationdate>20240801</creationdate><title>Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles</title><author>Amouroux, Baptiste ; Eftekhari, Ali ; Roux, Clément ; Micheau, Jean‐Claude ; Roblin, Pierre ; Pasturel, Mathieu ; Gauffre, Fabienne ; Würth, Christian ; Resch‐Genger, Ute ; Sliwa, Michel ; Bouchet, Aude ; Coudret, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2763-eef7bc648ae206b563d12a763aca9e22fcbcad1abf022c08f480a2f5fcf549663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><topic>Cross relaxation</topic><topic>Emission</topic><topic>Emitters</topic><topic>Excitation</topic><topic>Gadolinium</topic><topic>Luminescence</topic><topic>Nanoparticles</topic><topic>or physical chemistry</topic><topic>Quenching</topic><topic>single‐emitter particles</topic><topic>surface quenching rate constant</topic><topic>Synthesis</topic><topic>temperature cycling</topic><topic>Theoretical and</topic><topic>Thulium</topic><topic>ultrasmall upconversion nanoparticles</topic><topic>Upconversion</topic><topic>Ytterbium</topic><toplevel>online_resources</toplevel><creatorcontrib>Amouroux, Baptiste</creatorcontrib><creatorcontrib>Eftekhari, Ali</creatorcontrib><creatorcontrib>Roux, Clément</creatorcontrib><creatorcontrib>Micheau, Jean‐Claude</creatorcontrib><creatorcontrib>Roblin, Pierre</creatorcontrib><creatorcontrib>Pasturel, Mathieu</creatorcontrib><creatorcontrib>Gauffre, Fabienne</creatorcontrib><creatorcontrib>Würth, Christian</creatorcontrib><creatorcontrib>Resch‐Genger, Ute</creatorcontrib><creatorcontrib>Sliwa, Michel</creatorcontrib><creatorcontrib>Bouchet, Aude</creatorcontrib><creatorcontrib>Coudret, Christophe</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amouroux, Baptiste</au><au>Eftekhari, Ali</au><au>Roux, Clément</au><au>Micheau, Jean‐Claude</au><au>Roblin, Pierre</au><au>Pasturel, Mathieu</au><au>Gauffre, Fabienne</au><au>Würth, Christian</au><au>Resch‐Genger, Ute</au><au>Sliwa, Michel</au><au>Bouchet, Aude</au><au>Coudret, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles</atitle><jtitle>Advanced optical materials</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>24</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Reducing the size of upconversion nanoparticles (UCNPs) down to a few nm yields luminescent materials containing a very small number of emitters. Considering the bottom limit of one activator per particle ultrasmall UCNPs offer an unprecedented platform to study the contributions of the different energy transfers at play in upconversion luminescence. Maintaining detectable emission despite the limited number of emitting ions and the high surface‐to‐volume ratio requires suitable particle architectures. Na(Gd‐Yb)F4:Tm3+ emissive sub‐3 nm diameter β‐phase UCNPs are prepared using a gadolinium‐rich composition in situ mixing of the precursors and a microwave high‐temperature cycling sequence allowing precise control of the particle size and dispersity. These cores are coated with a NaGdF4 inert shell to minimize the deleterious influence of surface quenching (SQ). Time‐resolved luminescence measurements combining standard NIR excitation of the Yb3+ sensitizer and direct UV excitation of the Tm3+ activator are performed to quantify cross relaxation and surface quenching processes. The fine tuning of the number of activators per particle via an optimized synthesis pathway along with the use of an appropriate excitation scheme enabled to provide an accurate analysis of the different mechanisms at play in these model nanoparticles and to characterize the structure of the core‐shell architecture. Reducing the size of upconversion nanoparticles to a few nanometers produces materials containing a very small number of emitters. This simplifies the analysis of the contributions of the different energy transfers at play in upconversion luminescence. The synthesis of these ultrasmall nanoparticles requires a sophisticated, optimized and reproducible protocol so that the size and crystallinity can be well controlled.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202303283</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0204-9727</orcidid><orcidid>https://orcid.org/0000-0001-7334-5112</orcidid><orcidid>https://orcid.org/0000-0002-5073-8180</orcidid><orcidid>https://orcid.org/0000-0002-4765-8876</orcidid><orcidid>https://orcid.org/0000-0002-0944-1115</orcidid><orcidid>https://orcid.org/0000-0002-2172-9533</orcidid><orcidid>https://orcid.org/0000-0001-8379-4878</orcidid><orcidid>https://orcid.org/0000-0001-5707-4471</orcidid><orcidid>https://orcid.org/0000-0002-1193-4306</orcidid><orcidid>https://orcid.org/0009-0005-9557-0114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-08, Vol.12 (24), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_hal_primary_oai_HAL_hal_04645759v1
source Wiley-Blackwell Read & Publish Collection
subjects Chemical Sciences
Cross relaxation
Emission
Emitters
Excitation
Gadolinium
Luminescence
Nanoparticles
or physical chemistry
Quenching
single‐emitter particles
surface quenching rate constant
Synthesis
temperature cycling
Theoretical and
Thulium
ultrasmall upconversion nanoparticles
Upconversion
Ytterbium
title Synthesis and Emission Dynamics of Sub‐3 nm Upconversion Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Emission%20Dynamics%20of%20Sub%E2%80%903%C2%A0nm%20Upconversion%20Nanoparticles&rft.jtitle=Advanced%20optical%20materials&rft.au=Amouroux,%20Baptiste&rft.date=2024-08-01&rft.volume=12&rft.issue=24&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202303283&rft_dat=%3Cproquest_hal_p%3E3096434888%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2763-eef7bc648ae206b563d12a763aca9e22fcbcad1abf022c08f480a2f5fcf549663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096434888&rft_id=info:pmid/&rfr_iscdi=true