Loading…
Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations
Calcium-silicate-hydrate (C-S-H) is a disordered, nanocrystalline material, acting as a primary binding phase in Portland cement. C-S-H and C-A-S-H (an Al-bearing substitute present in low-CO2 cement) contain thin films of water on solid surfaces and inside nanopores. Water controls multiple chemica...
Saved in:
Published in: | Cement and concrete research 2024-10, Vol.184, p.107616, Article 107616 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-ccbdac8114d63d3827b95e618223419ee67359e04ddf741559eb172704966d733 |
container_end_page | |
container_issue | |
container_start_page | 107616 |
container_title | Cement and concrete research |
container_volume | 184 |
creator | Zhakiyeva, Zhanar Magnin, Valérie Poulain, Agnieszka Campillo, Sylvain Asta, María P. Besselink, Rogier Gaboreau, Stéphane Claret, Francis Grangeon, Sylvain Rudic, Svemir Rols, Stéphane Jiménez-Ruiz, Mónica Bourg, Ian C. Van Driessche, Alexander E.S. Cuello, Gabriel J. Fernández-Martínez, Alejandro |
description | Calcium-silicate-hydrate (C-S-H) is a disordered, nanocrystalline material, acting as a primary binding phase in Portland cement. C-S-H and C-A-S-H (an Al-bearing substitute present in low-CO2 cement) contain thin films of water on solid surfaces and inside nanopores. Water controls multiple chemical and mechanical properties of C-S-H, including drying shrinkage, ion transport, creep, and thermal behavior. Therefore, obtaining a fundamental understanding of its properties is essential. We applied a combination of inelastic incoherent neutron scattering and molecular dynamics simulations to unravel water dynamics in synthetic C-(A)-S-H conditioned at five hydration states (from drier to more hydrated) and with three Ca/Si ratios (0.9, 1, and 1.3). Our results converge towards a picture where the evolution from thin layers of interfacial water to bulk-like capillary water is dampened by the structure of C-(A)-S-H. In particular, the hydrophilic Ca2+ sites organize the distribution of interfacial C-(A)-S-H water. |
doi_str_mv | 10.1016/j.cemconres.2024.107616 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04673709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008884624001972</els_id><sourcerecordid>S0008884624001972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-ccbdac8114d63d3827b95e618223419ee67359e04ddf741559eb172704966d733</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKu_wWxdTM2rSWZZii8ouFFchkxya1NmMiWZFubfm1Ip7lzde0_O-SAHoXtKZpRQ-bidOehcHxPkGSNMFFVJKi_QhGrFK14LfYkmhBBdaS3kNbrJeVtOybieoP2XHSBhP0bbBZdxiNjZ1oV9h3NogyuveDP6VGbGu9Q34HEzFhu0Ng_B4Qj7IfUR52ItpBC_sY0ed30Lbt_aP-gcuiIMoY_5Fl2tbZvh7ndO0efz08fytVq9v7wtF6vKMTYfKucab52mVHjJPddMNfUcJNWMcUFrAKn4vAYivF8rQedlb6hiiohaSq84n6KHE3djW7NLobNpNL0N5nWxMkeNiIJQpD7Q4lUnr0t9zgnW5wAl5ti02Zpz0-bYtDk1XZKLUxLKVw4BkskuQHTgQwI3GN-Hfxk_aPSNUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations</title><source>Elsevier</source><creator>Zhakiyeva, Zhanar ; Magnin, Valérie ; Poulain, Agnieszka ; Campillo, Sylvain ; Asta, María P. ; Besselink, Rogier ; Gaboreau, Stéphane ; Claret, Francis ; Grangeon, Sylvain ; Rudic, Svemir ; Rols, Stéphane ; Jiménez-Ruiz, Mónica ; Bourg, Ian C. ; Van Driessche, Alexander E.S. ; Cuello, Gabriel J. ; Fernández-Martínez, Alejandro</creator><creatorcontrib>Zhakiyeva, Zhanar ; Magnin, Valérie ; Poulain, Agnieszka ; Campillo, Sylvain ; Asta, María P. ; Besselink, Rogier ; Gaboreau, Stéphane ; Claret, Francis ; Grangeon, Sylvain ; Rudic, Svemir ; Rols, Stéphane ; Jiménez-Ruiz, Mónica ; Bourg, Ian C. ; Van Driessche, Alexander E.S. ; Cuello, Gabriel J. ; Fernández-Martínez, Alejandro</creatorcontrib><description>Calcium-silicate-hydrate (C-S-H) is a disordered, nanocrystalline material, acting as a primary binding phase in Portland cement. C-S-H and C-A-S-H (an Al-bearing substitute present in low-CO2 cement) contain thin films of water on solid surfaces and inside nanopores. Water controls multiple chemical and mechanical properties of C-S-H, including drying shrinkage, ion transport, creep, and thermal behavior. Therefore, obtaining a fundamental understanding of its properties is essential. We applied a combination of inelastic incoherent neutron scattering and molecular dynamics simulations to unravel water dynamics in synthetic C-(A)-S-H conditioned at five hydration states (from drier to more hydrated) and with three Ca/Si ratios (0.9, 1, and 1.3). Our results converge towards a picture where the evolution from thin layers of interfacial water to bulk-like capillary water is dampened by the structure of C-(A)-S-H. In particular, the hydrophilic Ca2+ sites organize the distribution of interfacial C-(A)-S-H water.</description><identifier>ISSN: 0008-8846</identifier><identifier>EISSN: 1873-3948</identifier><identifier>DOI: 10.1016/j.cemconres.2024.107616</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>C-(A)-S-H ; Earth Sciences ; Inelastic neutron scattering ; Interfacial water ; Low CO2 cements ; Molecular dynamics simulations ; Nanoporous vs bulk-like water ; Sciences of the Universe ; Water dynamics</subject><ispartof>Cement and concrete research, 2024-10, Vol.184, p.107616, Article 107616</ispartof><rights>2024</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-ccbdac8114d63d3827b95e618223419ee67359e04ddf741559eb172704966d733</cites><orcidid>0000-0003-2472-6992 ; 0000-0002-6203-7795 ; 0000-0002-5018-3015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-04673709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhakiyeva, Zhanar</creatorcontrib><creatorcontrib>Magnin, Valérie</creatorcontrib><creatorcontrib>Poulain, Agnieszka</creatorcontrib><creatorcontrib>Campillo, Sylvain</creatorcontrib><creatorcontrib>Asta, María P.</creatorcontrib><creatorcontrib>Besselink, Rogier</creatorcontrib><creatorcontrib>Gaboreau, Stéphane</creatorcontrib><creatorcontrib>Claret, Francis</creatorcontrib><creatorcontrib>Grangeon, Sylvain</creatorcontrib><creatorcontrib>Rudic, Svemir</creatorcontrib><creatorcontrib>Rols, Stéphane</creatorcontrib><creatorcontrib>Jiménez-Ruiz, Mónica</creatorcontrib><creatorcontrib>Bourg, Ian C.</creatorcontrib><creatorcontrib>Van Driessche, Alexander E.S.</creatorcontrib><creatorcontrib>Cuello, Gabriel J.</creatorcontrib><creatorcontrib>Fernández-Martínez, Alejandro</creatorcontrib><title>Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations</title><title>Cement and concrete research</title><description>Calcium-silicate-hydrate (C-S-H) is a disordered, nanocrystalline material, acting as a primary binding phase in Portland cement. C-S-H and C-A-S-H (an Al-bearing substitute present in low-CO2 cement) contain thin films of water on solid surfaces and inside nanopores. Water controls multiple chemical and mechanical properties of C-S-H, including drying shrinkage, ion transport, creep, and thermal behavior. Therefore, obtaining a fundamental understanding of its properties is essential. We applied a combination of inelastic incoherent neutron scattering and molecular dynamics simulations to unravel water dynamics in synthetic C-(A)-S-H conditioned at five hydration states (from drier to more hydrated) and with three Ca/Si ratios (0.9, 1, and 1.3). Our results converge towards a picture where the evolution from thin layers of interfacial water to bulk-like capillary water is dampened by the structure of C-(A)-S-H. In particular, the hydrophilic Ca2+ sites organize the distribution of interfacial C-(A)-S-H water.</description><subject>C-(A)-S-H</subject><subject>Earth Sciences</subject><subject>Inelastic neutron scattering</subject><subject>Interfacial water</subject><subject>Low CO2 cements</subject><subject>Molecular dynamics simulations</subject><subject>Nanoporous vs bulk-like water</subject><subject>Sciences of the Universe</subject><subject>Water dynamics</subject><issn>0008-8846</issn><issn>1873-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKu_wWxdTM2rSWZZii8ouFFchkxya1NmMiWZFubfm1Ip7lzde0_O-SAHoXtKZpRQ-bidOehcHxPkGSNMFFVJKi_QhGrFK14LfYkmhBBdaS3kNbrJeVtOybieoP2XHSBhP0bbBZdxiNjZ1oV9h3NogyuveDP6VGbGu9Q34HEzFhu0Ng_B4Qj7IfUR52ItpBC_sY0ed30Lbt_aP-gcuiIMoY_5Fl2tbZvh7ndO0efz08fytVq9v7wtF6vKMTYfKucab52mVHjJPddMNfUcJNWMcUFrAKn4vAYivF8rQedlb6hiiohaSq84n6KHE3djW7NLobNpNL0N5nWxMkeNiIJQpD7Q4lUnr0t9zgnW5wAl5ti02Zpz0-bYtDk1XZKLUxLKVw4BkskuQHTgQwI3GN-Hfxk_aPSNUA</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhakiyeva, Zhanar</creator><creator>Magnin, Valérie</creator><creator>Poulain, Agnieszka</creator><creator>Campillo, Sylvain</creator><creator>Asta, María P.</creator><creator>Besselink, Rogier</creator><creator>Gaboreau, Stéphane</creator><creator>Claret, Francis</creator><creator>Grangeon, Sylvain</creator><creator>Rudic, Svemir</creator><creator>Rols, Stéphane</creator><creator>Jiménez-Ruiz, Mónica</creator><creator>Bourg, Ian C.</creator><creator>Van Driessche, Alexander E.S.</creator><creator>Cuello, Gabriel J.</creator><creator>Fernández-Martínez, Alejandro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2472-6992</orcidid><orcidid>https://orcid.org/0000-0002-6203-7795</orcidid><orcidid>https://orcid.org/0000-0002-5018-3015</orcidid></search><sort><creationdate>202410</creationdate><title>Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations</title><author>Zhakiyeva, Zhanar ; Magnin, Valérie ; Poulain, Agnieszka ; Campillo, Sylvain ; Asta, María P. ; Besselink, Rogier ; Gaboreau, Stéphane ; Claret, Francis ; Grangeon, Sylvain ; Rudic, Svemir ; Rols, Stéphane ; Jiménez-Ruiz, Mónica ; Bourg, Ian C. ; Van Driessche, Alexander E.S. ; Cuello, Gabriel J. ; Fernández-Martínez, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-ccbdac8114d63d3827b95e618223419ee67359e04ddf741559eb172704966d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C-(A)-S-H</topic><topic>Earth Sciences</topic><topic>Inelastic neutron scattering</topic><topic>Interfacial water</topic><topic>Low CO2 cements</topic><topic>Molecular dynamics simulations</topic><topic>Nanoporous vs bulk-like water</topic><topic>Sciences of the Universe</topic><topic>Water dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhakiyeva, Zhanar</creatorcontrib><creatorcontrib>Magnin, Valérie</creatorcontrib><creatorcontrib>Poulain, Agnieszka</creatorcontrib><creatorcontrib>Campillo, Sylvain</creatorcontrib><creatorcontrib>Asta, María P.</creatorcontrib><creatorcontrib>Besselink, Rogier</creatorcontrib><creatorcontrib>Gaboreau, Stéphane</creatorcontrib><creatorcontrib>Claret, Francis</creatorcontrib><creatorcontrib>Grangeon, Sylvain</creatorcontrib><creatorcontrib>Rudic, Svemir</creatorcontrib><creatorcontrib>Rols, Stéphane</creatorcontrib><creatorcontrib>Jiménez-Ruiz, Mónica</creatorcontrib><creatorcontrib>Bourg, Ian C.</creatorcontrib><creatorcontrib>Van Driessche, Alexander E.S.</creatorcontrib><creatorcontrib>Cuello, Gabriel J.</creatorcontrib><creatorcontrib>Fernández-Martínez, Alejandro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cement and concrete research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhakiyeva, Zhanar</au><au>Magnin, Valérie</au><au>Poulain, Agnieszka</au><au>Campillo, Sylvain</au><au>Asta, María P.</au><au>Besselink, Rogier</au><au>Gaboreau, Stéphane</au><au>Claret, Francis</au><au>Grangeon, Sylvain</au><au>Rudic, Svemir</au><au>Rols, Stéphane</au><au>Jiménez-Ruiz, Mónica</au><au>Bourg, Ian C.</au><au>Van Driessche, Alexander E.S.</au><au>Cuello, Gabriel J.</au><au>Fernández-Martínez, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations</atitle><jtitle>Cement and concrete research</jtitle><date>2024-10</date><risdate>2024</risdate><volume>184</volume><spage>107616</spage><pages>107616-</pages><artnum>107616</artnum><issn>0008-8846</issn><eissn>1873-3948</eissn><abstract>Calcium-silicate-hydrate (C-S-H) is a disordered, nanocrystalline material, acting as a primary binding phase in Portland cement. C-S-H and C-A-S-H (an Al-bearing substitute present in low-CO2 cement) contain thin films of water on solid surfaces and inside nanopores. Water controls multiple chemical and mechanical properties of C-S-H, including drying shrinkage, ion transport, creep, and thermal behavior. Therefore, obtaining a fundamental understanding of its properties is essential. We applied a combination of inelastic incoherent neutron scattering and molecular dynamics simulations to unravel water dynamics in synthetic C-(A)-S-H conditioned at five hydration states (from drier to more hydrated) and with three Ca/Si ratios (0.9, 1, and 1.3). Our results converge towards a picture where the evolution from thin layers of interfacial water to bulk-like capillary water is dampened by the structure of C-(A)-S-H. In particular, the hydrophilic Ca2+ sites organize the distribution of interfacial C-(A)-S-H water.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconres.2024.107616</doi><orcidid>https://orcid.org/0000-0003-2472-6992</orcidid><orcidid>https://orcid.org/0000-0002-6203-7795</orcidid><orcidid>https://orcid.org/0000-0002-5018-3015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-8846 |
ispartof | Cement and concrete research, 2024-10, Vol.184, p.107616, Article 107616 |
issn | 0008-8846 1873-3948 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04673709v1 |
source | Elsevier |
subjects | C-(A)-S-H Earth Sciences Inelastic neutron scattering Interfacial water Low CO2 cements Molecular dynamics simulations Nanoporous vs bulk-like water Sciences of the Universe Water dynamics |
title | Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20dynamics%20in%20calcium%20silicate%20hydrates%20probed%20by%20inelastic%20neutron%20scattering%20and%20molecular%20dynamics%20simulations&rft.jtitle=Cement%20and%20concrete%20research&rft.au=Zhakiyeva,%20Zhanar&rft.date=2024-10&rft.volume=184&rft.spage=107616&rft.pages=107616-&rft.artnum=107616&rft.issn=0008-8846&rft.eissn=1873-3948&rft_id=info:doi/10.1016/j.cemconres.2024.107616&rft_dat=%3Celsevier_hal_p%3ES0008884624001972%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-ccbdac8114d63d3827b95e618223419ee67359e04ddf741559eb172704966d733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |