Loading…

Thermal vortex ring: vortex-dynamics analysis of a high-resolution simulation

A high-resolution simulation of a thermal vortex ring is analysed from the point of view of the vortex dynamics. A power-spectrum analysis of vortex-ring sections suggests that the simulated flows are overall ‘two dimensional’ in the large-scale limit, being dominated by axisymmetric components, but...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2024-08, Vol.991
Main Authors: Yano, Jun-Ichi, Morrison, Hugh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-resolution simulation of a thermal vortex ring is analysed from the point of view of the vortex dynamics. A power-spectrum analysis of vortex-ring sections suggests that the simulated flows are overall ‘two dimensional’ in the large-scale limit, being dominated by axisymmetric components, but with a substantial contribution from the non-axisymmetric component at small scales. Contribution of the non-axisymmetric components is negligible in budgets of volume integrals of the vorticity and potential vorticity as well as the impulse (moments of the vorticity weighted by $s^n$ with $n=-1$, 0, 1, where $s$ is the distance from the vertical axis of the vortex ring). A concise description of the dynamics is obtained as a function of geometrical factors together with these three integral variables. Analysis shows that the geometrical factors are fairly close to constant with time, and thus, a redundant closed description of the system is obtained in the similarity regime after spin up of the vortex ring. This redundancy leads to a constraint on the geometrical factors, which is reasonably satisfied by the simulation. A closed description is also obtained over the initial spin-up period of the vortex ring by adding a phenomenologically derived prognostic equation for the source for the volume integral of the potential vorticity (with $n=-1$). Analysis of the budget supports this description.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.485