Loading…
Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides
Fluorine possesses remarkable properties that ensure its enduring and indispensable role in both academic and industrial development across diverse domains of our daily lives. Nevertheless, fluorine has become a growing environmental concern, leading to the consideration of molecular fluorine (F2) a...
Saved in:
Published in: | ACS applied nano materials 2024-08, Vol.7 (15), p.17816-17828 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a193t-58a0fe681183cfeb0689fb6a6e74aec7f1b9e4ac8ee07502e47b79547bec30a33 |
container_end_page | 17828 |
container_issue | 15 |
container_start_page | 17816 |
container_title | ACS applied nano materials |
container_volume | 7 |
creator | Camus-Génot, Valentine Boivin, Edouard Legein, Christophe Body, Monique Durand, Etienne Demourgues, Alain Dubois, Marc Clavier, Batiste Lemoine, Kévin Sarou-Kanian, Vincent Hémon-Ribaud, Annie Maisonneuve, Vincent Lhoste, Jérôme Guiet, Amandine |
description | Fluorine possesses remarkable properties that ensure its enduring and indispensable role in both academic and industrial development across diverse domains of our daily lives. Nevertheless, fluorine has become a growing environmental concern, leading to the consideration of molecular fluorine (F2) as an alternative fluorinating agent due to its low environmental impact compared to hydrofluorocarbons (HFCs) or perfluorinated compounds (PFCs). However, its pronounced toxicity, corrosiveness, and hazardous nature are problematic when handling F2 gas cylinders. Solid storage through chemisorption via the CeF4/CeF3 transformation appears to be a promising approach to overcome its intrinsic problems. This article introduces a fundamental study exploring the impact of the chemical composition of precursor materials, CeF3 or CeO2, and the nanostructuration in the form of nanoparticles or macroporous structures on fluorination/defluorination temperatures, redox process reversibility, and the nature of the released gas, a parameter not systematically examined in previous studies. Through a deep investigation via X-ray diffraction (XRD) and electron microscopies (SEM, TEM), we demonstrate the benefit of both the pristine phase (CeO2) and the nanostructuration into a macroporous structure (OPIF) on the limitation of crystalline growth during the fluorination process. The defluorination process, monitored by TGA and gas-phase IR spectroscopy, revealed that when CeO2-OPIF undergoes fluorination to form CeF4 followed by consecutive vacuum defluorination without exposure to ambient air, incomplete decomposition of CeF4 into CeF3 results in the partial release of F2. Conversely, exposure of the fluorinated material to air results in partial formation of a hydrate, CeF4·0.33H2O, confirmed by solid-state NMR, and promotes the defluorination (enhanced yield and release kinetics) through the formation of CeF3 with both HF and F2 release, increasing the cyclability performance from 1 cycle to at least 8 cycles. |
doi_str_mv | 10.1021/acsanm.4c03024 |
format | article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04676815v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a507179719</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-58a0fe681183cfeb0689fb6a6e74aec7f1b9e4ac8ee07502e47b79547bec30a33</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsGivnnNVSJ3NbrLJsYTWFooe1PMy2c7alHzIbiL437slRbx4mRkev_dgHmN3HBYcEv6IxmPXLqQBAYm8YLMkVTKGQsHln_uazb0_AgAveCYAZmxbHqitDTbR69A7_KCot9GqoZa6IYjrZuxd3VFUd9Ezdr0f3GiG0dE-KsnVY3sm9uRv2ZXFxtP8vG_Y-3r1Vm7i3cvTtlzuYuSFGOI0R7CU5ZznwliqIMsLW2WYkZJIRlleFSTR5ESgUkhIqkoVaZhkBKAQN-x-yj1goz9d3aL71j3WerPc6ZMGMlMhP_3igV1MrHG9947sr4GDPvWmp970ubdgeJgMQdfHfnRdeOU_-AdnSG-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Camus-Génot, Valentine ; Boivin, Edouard ; Legein, Christophe ; Body, Monique ; Durand, Etienne ; Demourgues, Alain ; Dubois, Marc ; Clavier, Batiste ; Lemoine, Kévin ; Sarou-Kanian, Vincent ; Hémon-Ribaud, Annie ; Maisonneuve, Vincent ; Lhoste, Jérôme ; Guiet, Amandine</creator><creatorcontrib>Camus-Génot, Valentine ; Boivin, Edouard ; Legein, Christophe ; Body, Monique ; Durand, Etienne ; Demourgues, Alain ; Dubois, Marc ; Clavier, Batiste ; Lemoine, Kévin ; Sarou-Kanian, Vincent ; Hémon-Ribaud, Annie ; Maisonneuve, Vincent ; Lhoste, Jérôme ; Guiet, Amandine</creatorcontrib><description>Fluorine possesses remarkable properties that ensure its enduring and indispensable role in both academic and industrial development across diverse domains of our daily lives. Nevertheless, fluorine has become a growing environmental concern, leading to the consideration of molecular fluorine (F2) as an alternative fluorinating agent due to its low environmental impact compared to hydrofluorocarbons (HFCs) or perfluorinated compounds (PFCs). However, its pronounced toxicity, corrosiveness, and hazardous nature are problematic when handling F2 gas cylinders. Solid storage through chemisorption via the CeF4/CeF3 transformation appears to be a promising approach to overcome its intrinsic problems. This article introduces a fundamental study exploring the impact of the chemical composition of precursor materials, CeF3 or CeO2, and the nanostructuration in the form of nanoparticles or macroporous structures on fluorination/defluorination temperatures, redox process reversibility, and the nature of the released gas, a parameter not systematically examined in previous studies. Through a deep investigation via X-ray diffraction (XRD) and electron microscopies (SEM, TEM), we demonstrate the benefit of both the pristine phase (CeO2) and the nanostructuration into a macroporous structure (OPIF) on the limitation of crystalline growth during the fluorination process. The defluorination process, monitored by TGA and gas-phase IR spectroscopy, revealed that when CeO2-OPIF undergoes fluorination to form CeF4 followed by consecutive vacuum defluorination without exposure to ambient air, incomplete decomposition of CeF4 into CeF3 results in the partial release of F2. Conversely, exposure of the fluorinated material to air results in partial formation of a hydrate, CeF4·0.33H2O, confirmed by solid-state NMR, and promotes the defluorination (enhanced yield and release kinetics) through the formation of CeF3 with both HF and F2 release, increasing the cyclability performance from 1 cycle to at least 8 cycles.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c03024</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>ACS applied nano materials, 2024-08, Vol.7 (15), p.17816-17828</ispartof><rights>2024 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a193t-58a0fe681183cfeb0689fb6a6e74aec7f1b9e4ac8ee07502e47b79547bec30a33</cites><orcidid>0000-0001-7590-1119 ; 0000-0002-5468-3594 ; 0000-0002-9192-0931 ; 0000-0002-5895-3731 ; 0000-0001-9611-8377 ; 0000-0002-4570-6459 ; 0000-0001-7426-8817 ; 0000-0003-4845-5971 ; 0000-0003-0570-953X ; 0000-0002-3828-8498 ; 0000-0001-8057-583X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04676815$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Camus-Génot, Valentine</creatorcontrib><creatorcontrib>Boivin, Edouard</creatorcontrib><creatorcontrib>Legein, Christophe</creatorcontrib><creatorcontrib>Body, Monique</creatorcontrib><creatorcontrib>Durand, Etienne</creatorcontrib><creatorcontrib>Demourgues, Alain</creatorcontrib><creatorcontrib>Dubois, Marc</creatorcontrib><creatorcontrib>Clavier, Batiste</creatorcontrib><creatorcontrib>Lemoine, Kévin</creatorcontrib><creatorcontrib>Sarou-Kanian, Vincent</creatorcontrib><creatorcontrib>Hémon-Ribaud, Annie</creatorcontrib><creatorcontrib>Maisonneuve, Vincent</creatorcontrib><creatorcontrib>Lhoste, Jérôme</creatorcontrib><creatorcontrib>Guiet, Amandine</creatorcontrib><title>Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Fluorine possesses remarkable properties that ensure its enduring and indispensable role in both academic and industrial development across diverse domains of our daily lives. Nevertheless, fluorine has become a growing environmental concern, leading to the consideration of molecular fluorine (F2) as an alternative fluorinating agent due to its low environmental impact compared to hydrofluorocarbons (HFCs) or perfluorinated compounds (PFCs). However, its pronounced toxicity, corrosiveness, and hazardous nature are problematic when handling F2 gas cylinders. Solid storage through chemisorption via the CeF4/CeF3 transformation appears to be a promising approach to overcome its intrinsic problems. This article introduces a fundamental study exploring the impact of the chemical composition of precursor materials, CeF3 or CeO2, and the nanostructuration in the form of nanoparticles or macroporous structures on fluorination/defluorination temperatures, redox process reversibility, and the nature of the released gas, a parameter not systematically examined in previous studies. Through a deep investigation via X-ray diffraction (XRD) and electron microscopies (SEM, TEM), we demonstrate the benefit of both the pristine phase (CeO2) and the nanostructuration into a macroporous structure (OPIF) on the limitation of crystalline growth during the fluorination process. The defluorination process, monitored by TGA and gas-phase IR spectroscopy, revealed that when CeO2-OPIF undergoes fluorination to form CeF4 followed by consecutive vacuum defluorination without exposure to ambient air, incomplete decomposition of CeF4 into CeF3 results in the partial release of F2. Conversely, exposure of the fluorinated material to air results in partial formation of a hydrate, CeF4·0.33H2O, confirmed by solid-state NMR, and promotes the defluorination (enhanced yield and release kinetics) through the formation of CeF3 with both HF and F2 release, increasing the cyclability performance from 1 cycle to at least 8 cycles.</description><subject>Chemical Sciences</subject><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsGivnnNVSJ3NbrLJsYTWFooe1PMy2c7alHzIbiL437slRbx4mRkev_dgHmN3HBYcEv6IxmPXLqQBAYm8YLMkVTKGQsHln_uazb0_AgAveCYAZmxbHqitDTbR69A7_KCot9GqoZa6IYjrZuxd3VFUd9Ezdr0f3GiG0dE-KsnVY3sm9uRv2ZXFxtP8vG_Y-3r1Vm7i3cvTtlzuYuSFGOI0R7CU5ZznwliqIMsLW2WYkZJIRlleFSTR5ESgUkhIqkoVaZhkBKAQN-x-yj1goz9d3aL71j3WerPc6ZMGMlMhP_3igV1MrHG9947sr4GDPvWmp970ubdgeJgMQdfHfnRdeOU_-AdnSG-V</recordid><startdate>20240809</startdate><enddate>20240809</enddate><creator>Camus-Génot, Valentine</creator><creator>Boivin, Edouard</creator><creator>Legein, Christophe</creator><creator>Body, Monique</creator><creator>Durand, Etienne</creator><creator>Demourgues, Alain</creator><creator>Dubois, Marc</creator><creator>Clavier, Batiste</creator><creator>Lemoine, Kévin</creator><creator>Sarou-Kanian, Vincent</creator><creator>Hémon-Ribaud, Annie</creator><creator>Maisonneuve, Vincent</creator><creator>Lhoste, Jérôme</creator><creator>Guiet, Amandine</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7590-1119</orcidid><orcidid>https://orcid.org/0000-0002-5468-3594</orcidid><orcidid>https://orcid.org/0000-0002-9192-0931</orcidid><orcidid>https://orcid.org/0000-0002-5895-3731</orcidid><orcidid>https://orcid.org/0000-0001-9611-8377</orcidid><orcidid>https://orcid.org/0000-0002-4570-6459</orcidid><orcidid>https://orcid.org/0000-0001-7426-8817</orcidid><orcidid>https://orcid.org/0000-0003-4845-5971</orcidid><orcidid>https://orcid.org/0000-0003-0570-953X</orcidid><orcidid>https://orcid.org/0000-0002-3828-8498</orcidid><orcidid>https://orcid.org/0000-0001-8057-583X</orcidid></search><sort><creationdate>20240809</creationdate><title>Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides</title><author>Camus-Génot, Valentine ; Boivin, Edouard ; Legein, Christophe ; Body, Monique ; Durand, Etienne ; Demourgues, Alain ; Dubois, Marc ; Clavier, Batiste ; Lemoine, Kévin ; Sarou-Kanian, Vincent ; Hémon-Ribaud, Annie ; Maisonneuve, Vincent ; Lhoste, Jérôme ; Guiet, Amandine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-58a0fe681183cfeb0689fb6a6e74aec7f1b9e4ac8ee07502e47b79547bec30a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camus-Génot, Valentine</creatorcontrib><creatorcontrib>Boivin, Edouard</creatorcontrib><creatorcontrib>Legein, Christophe</creatorcontrib><creatorcontrib>Body, Monique</creatorcontrib><creatorcontrib>Durand, Etienne</creatorcontrib><creatorcontrib>Demourgues, Alain</creatorcontrib><creatorcontrib>Dubois, Marc</creatorcontrib><creatorcontrib>Clavier, Batiste</creatorcontrib><creatorcontrib>Lemoine, Kévin</creatorcontrib><creatorcontrib>Sarou-Kanian, Vincent</creatorcontrib><creatorcontrib>Hémon-Ribaud, Annie</creatorcontrib><creatorcontrib>Maisonneuve, Vincent</creatorcontrib><creatorcontrib>Lhoste, Jérôme</creatorcontrib><creatorcontrib>Guiet, Amandine</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camus-Génot, Valentine</au><au>Boivin, Edouard</au><au>Legein, Christophe</au><au>Body, Monique</au><au>Durand, Etienne</au><au>Demourgues, Alain</au><au>Dubois, Marc</au><au>Clavier, Batiste</au><au>Lemoine, Kévin</au><au>Sarou-Kanian, Vincent</au><au>Hémon-Ribaud, Annie</au><au>Maisonneuve, Vincent</au><au>Lhoste, Jérôme</au><au>Guiet, Amandine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-08-09</date><risdate>2024</risdate><volume>7</volume><issue>15</issue><spage>17816</spage><epage>17828</epage><pages>17816-17828</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Fluorine possesses remarkable properties that ensure its enduring and indispensable role in both academic and industrial development across diverse domains of our daily lives. Nevertheless, fluorine has become a growing environmental concern, leading to the consideration of molecular fluorine (F2) as an alternative fluorinating agent due to its low environmental impact compared to hydrofluorocarbons (HFCs) or perfluorinated compounds (PFCs). However, its pronounced toxicity, corrosiveness, and hazardous nature are problematic when handling F2 gas cylinders. Solid storage through chemisorption via the CeF4/CeF3 transformation appears to be a promising approach to overcome its intrinsic problems. This article introduces a fundamental study exploring the impact of the chemical composition of precursor materials, CeF3 or CeO2, and the nanostructuration in the form of nanoparticles or macroporous structures on fluorination/defluorination temperatures, redox process reversibility, and the nature of the released gas, a parameter not systematically examined in previous studies. Through a deep investigation via X-ray diffraction (XRD) and electron microscopies (SEM, TEM), we demonstrate the benefit of both the pristine phase (CeO2) and the nanostructuration into a macroporous structure (OPIF) on the limitation of crystalline growth during the fluorination process. The defluorination process, monitored by TGA and gas-phase IR spectroscopy, revealed that when CeO2-OPIF undergoes fluorination to form CeF4 followed by consecutive vacuum defluorination without exposure to ambient air, incomplete decomposition of CeF4 into CeF3 results in the partial release of F2. Conversely, exposure of the fluorinated material to air results in partial formation of a hydrate, CeF4·0.33H2O, confirmed by solid-state NMR, and promotes the defluorination (enhanced yield and release kinetics) through the formation of CeF3 with both HF and F2 release, increasing the cyclability performance from 1 cycle to at least 8 cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c03024</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7590-1119</orcidid><orcidid>https://orcid.org/0000-0002-5468-3594</orcidid><orcidid>https://orcid.org/0000-0002-9192-0931</orcidid><orcidid>https://orcid.org/0000-0002-5895-3731</orcidid><orcidid>https://orcid.org/0000-0001-9611-8377</orcidid><orcidid>https://orcid.org/0000-0002-4570-6459</orcidid><orcidid>https://orcid.org/0000-0001-7426-8817</orcidid><orcidid>https://orcid.org/0000-0003-4845-5971</orcidid><orcidid>https://orcid.org/0000-0003-0570-953X</orcidid><orcidid>https://orcid.org/0000-0002-3828-8498</orcidid><orcidid>https://orcid.org/0000-0001-8057-583X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2024-08, Vol.7 (15), p.17816-17828 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04676815v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical Sciences |
title | Chemical Storage of Elemental Fluorine in Nanostructured Cerium Fluorides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Storage%20of%20Elemental%20Fluorine%20in%20Nanostructured%20Cerium%20Fluorides&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Camus-Ge%CC%81not,%20Valentine&rft.date=2024-08-09&rft.volume=7&rft.issue=15&rft.spage=17816&rft.epage=17828&rft.pages=17816-17828&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c03024&rft_dat=%3Cacs_hal_p%3Ea507179719%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a193t-58a0fe681183cfeb0689fb6a6e74aec7f1b9e4ac8ee07502e47b79547bec30a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |