Loading…

2500 vibronic eigenstates of the NO 3 radical

The nitrate radical NO plays an important role in atmospheric chemistry, yet many aspects of its coupled and anharmonic vibronic structure remain elusive. Here, using an accurate, coupled full-dimensional diabatic potential that includes five electronic states, we revisit the vibronic spectrum assoc...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-09, Vol.26 (37), p.24506-24523
Main Authors: Larsson, Henrik R, Viel, Alexandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nitrate radical NO plays an important role in atmospheric chemistry, yet many aspects of its coupled and anharmonic vibronic structure remain elusive. Here, using an accurate, coupled full-dimensional diabatic potential that includes five electronic states, we revisit the vibronic spectrum associated with the electronic state. Using recently developed tensor network state methods, we are able to compute more than 2500 vibronic states, thereby increasing the number of computed full-dimensional states by a factor of 50, compared to previous work. While we obtain good agreement with experiment for most of the assigned vibronic levels, for several others, we observe striking disagreement. Further, for the antisymmetric bending motion we find remarkably large symmetry-induced level splittings that are larger than the zero-order reference. We discuss non-negligible nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors in the spectrum.
ISSN:1463-9076
1463-9084
DOI:10.1039/d4cp02653e