Loading…
Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets
Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, t...
Saved in:
Published in: | Journal of the Franklin Institute 2024-12, Vol.361 (18), p.107201, Article 107201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63 |
container_end_page | |
container_issue | 18 |
container_start_page | 107201 |
container_title | Journal of the Franklin Institute |
container_volume | 361 |
creator | Guillet, Alexandre Argoul, Françoise |
description | Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration.
•T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases. |
doi_str_mv | 10.1016/j.jfranklin.2024.107201 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04700580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003224006227</els_id><sourcerecordid>S0016003224006227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</originalsourceid><addsrcrecordid>eNqFkE1PAyEURVloYq3-Btm6mApM58td01Rr0sSNXZM3fLSMlGmAtPbfy2RMt66Ad9-5CQehJ0pmlNDypZt12oP7tsbNGGHzNK0YoTdoQlKcEZKzO3QfQpeeFSVkgrqtE8pHMC5eMDiJjdO9P0A0vUt3fNxfgultvzMCLA5m58CGV7z6OVojTBzzIYoepMp6rfHZxD1OROaGIovPcFJWxfCAbnWC1ePfOUXbt9XXcp1tPt8_lotNJhgrYlboRrakpA3N25yWRVGTqoG6pXUDRSXnkrWyqZmuSzYHJkHTqhA1YXkDDEpV5lP0PPbuwfKjNwfwF96D4evFhg8zMq8ISbUnmnarcVf4PgSv9BWghA9KecevSvmglI9KE7kYSZW-cjLK8yCMSjKl8UpELnvzb8cvlJuG4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Guillet, Alexandre ; Argoul, Françoise</creator><creatorcontrib>Guillet, Alexandre ; Argoul, Françoise</creatorcontrib><description>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration.
•T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</description><identifier>ISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2024.107201</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Applications ; Coherence ; Engineering Sciences ; Log-normal wavelet ; Medical Physics ; Mutual information ; Physics ; Physiological signals ; Polysomnography ; Signal and Image processing ; Single trial time–frequency statistics ; Statistical significance ; Statistics ; Time–frequency analysis ; Uncertainty principle</subject><ispartof>Journal of the Franklin Institute, 2024-12, Vol.361 (18), p.107201, Article 107201</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</cites><orcidid>0000-0002-7258-6130 ; 0000-0001-9157-3565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003224006227$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04700580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillet, Alexandre</creatorcontrib><creatorcontrib>Argoul, Françoise</creatorcontrib><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><title>Journal of the Franklin Institute</title><description>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration.
•T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</description><subject>Applications</subject><subject>Coherence</subject><subject>Engineering Sciences</subject><subject>Log-normal wavelet</subject><subject>Medical Physics</subject><subject>Mutual information</subject><subject>Physics</subject><subject>Physiological signals</subject><subject>Polysomnography</subject><subject>Signal and Image processing</subject><subject>Single trial time–frequency statistics</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Time–frequency analysis</subject><subject>Uncertainty principle</subject><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEURVloYq3-Btm6mApM58td01Rr0sSNXZM3fLSMlGmAtPbfy2RMt66Ad9-5CQehJ0pmlNDypZt12oP7tsbNGGHzNK0YoTdoQlKcEZKzO3QfQpeeFSVkgrqtE8pHMC5eMDiJjdO9P0A0vUt3fNxfgultvzMCLA5m58CGV7z6OVojTBzzIYoepMp6rfHZxD1OROaGIovPcFJWxfCAbnWC1ePfOUXbt9XXcp1tPt8_lotNJhgrYlboRrakpA3N25yWRVGTqoG6pXUDRSXnkrWyqZmuSzYHJkHTqhA1YXkDDEpV5lP0PPbuwfKjNwfwF96D4evFhg8zMq8ISbUnmnarcVf4PgSv9BWghA9KecevSvmglI9KE7kYSZW-cjLK8yCMSjKl8UpELnvzb8cvlJuG4g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Guillet, Alexandre</creator><creator>Argoul, Françoise</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7258-6130</orcidid><orcidid>https://orcid.org/0000-0001-9157-3565</orcidid></search><sort><creationdate>20241201</creationdate><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><author>Guillet, Alexandre ; Argoul, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications</topic><topic>Coherence</topic><topic>Engineering Sciences</topic><topic>Log-normal wavelet</topic><topic>Medical Physics</topic><topic>Mutual information</topic><topic>Physics</topic><topic>Physiological signals</topic><topic>Polysomnography</topic><topic>Signal and Image processing</topic><topic>Single trial time–frequency statistics</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Time–frequency analysis</topic><topic>Uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillet, Alexandre</creatorcontrib><creatorcontrib>Argoul, Françoise</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillet, Alexandre</au><au>Argoul, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>361</volume><issue>18</issue><spage>107201</spage><pages>107201-</pages><artnum>107201</artnum><issn>0016-0032</issn><abstract>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration.
•T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfranklin.2024.107201</doi><orcidid>https://orcid.org/0000-0002-7258-6130</orcidid><orcidid>https://orcid.org/0000-0001-9157-3565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2024-12, Vol.361 (18), p.107201, Article 107201 |
issn | 0016-0032 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04700580v1 |
source | Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Applications Coherence Engineering Sciences Log-normal wavelet Medical Physics Mutual information Physics Physiological signals Polysomnography Signal and Image processing Single trial time–frequency statistics Statistical significance Statistics Time–frequency analysis Uncertainty principle |
title | Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20and%20information%20in%20physiological%20signals:%20Explicit%20physical%20trade-off%20with%20log-normal%20wavelets&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Guillet,%20Alexandre&rft.date=2024-12-01&rft.volume=361&rft.issue=18&rft.spage=107201&rft.pages=107201-&rft.artnum=107201&rft.issn=0016-0032&rft_id=info:doi/10.1016/j.jfranklin.2024.107201&rft_dat=%3Celsevier_hal_p%3ES0016003224006227%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |