Loading…

Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets

Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2024-12, Vol.361 (18), p.107201, Article 107201
Main Authors: Guillet, Alexandre, Argoul, Françoise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63
container_end_page
container_issue 18
container_start_page 107201
container_title Journal of the Franklin Institute
container_volume 361
creator Guillet, Alexandre
Argoul, Françoise
description Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration. •T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.
doi_str_mv 10.1016/j.jfranklin.2024.107201
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04700580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003224006227</els_id><sourcerecordid>S0016003224006227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</originalsourceid><addsrcrecordid>eNqFkE1PAyEURVloYq3-Btm6mApM58td01Rr0sSNXZM3fLSMlGmAtPbfy2RMt66Ad9-5CQehJ0pmlNDypZt12oP7tsbNGGHzNK0YoTdoQlKcEZKzO3QfQpeeFSVkgrqtE8pHMC5eMDiJjdO9P0A0vUt3fNxfgultvzMCLA5m58CGV7z6OVojTBzzIYoepMp6rfHZxD1OROaGIovPcFJWxfCAbnWC1ePfOUXbt9XXcp1tPt8_lotNJhgrYlboRrakpA3N25yWRVGTqoG6pXUDRSXnkrWyqZmuSzYHJkHTqhA1YXkDDEpV5lP0PPbuwfKjNwfwF96D4evFhg8zMq8ISbUnmnarcVf4PgSv9BWghA9KecevSvmglI9KE7kYSZW-cjLK8yCMSjKl8UpELnvzb8cvlJuG4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Guillet, Alexandre ; Argoul, Françoise</creator><creatorcontrib>Guillet, Alexandre ; Argoul, Françoise</creatorcontrib><description>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration. •T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</description><identifier>ISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2024.107201</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Applications ; Coherence ; Engineering Sciences ; Log-normal wavelet ; Medical Physics ; Mutual information ; Physics ; Physiological signals ; Polysomnography ; Signal and Image processing ; Single trial time–frequency statistics ; Statistical significance ; Statistics ; Time–frequency analysis ; Uncertainty principle</subject><ispartof>Journal of the Franklin Institute, 2024-12, Vol.361 (18), p.107201, Article 107201</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</cites><orcidid>0000-0002-7258-6130 ; 0000-0001-9157-3565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003224006227$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04700580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillet, Alexandre</creatorcontrib><creatorcontrib>Argoul, Françoise</creatorcontrib><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><title>Journal of the Franklin Institute</title><description>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration. •T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</description><subject>Applications</subject><subject>Coherence</subject><subject>Engineering Sciences</subject><subject>Log-normal wavelet</subject><subject>Medical Physics</subject><subject>Mutual information</subject><subject>Physics</subject><subject>Physiological signals</subject><subject>Polysomnography</subject><subject>Signal and Image processing</subject><subject>Single trial time–frequency statistics</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Time–frequency analysis</subject><subject>Uncertainty principle</subject><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEURVloYq3-Btm6mApM58td01Rr0sSNXZM3fLSMlGmAtPbfy2RMt66Ad9-5CQehJ0pmlNDypZt12oP7tsbNGGHzNK0YoTdoQlKcEZKzO3QfQpeeFSVkgrqtE8pHMC5eMDiJjdO9P0A0vUt3fNxfgultvzMCLA5m58CGV7z6OVojTBzzIYoepMp6rfHZxD1OROaGIovPcFJWxfCAbnWC1ePfOUXbt9XXcp1tPt8_lotNJhgrYlboRrakpA3N25yWRVGTqoG6pXUDRSXnkrWyqZmuSzYHJkHTqhA1YXkDDEpV5lP0PPbuwfKjNwfwF96D4evFhg8zMq8ISbUnmnarcVf4PgSv9BWghA9KecevSvmglI9KE7kYSZW-cjLK8yCMSjKl8UpELnvzb8cvlJuG4g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Guillet, Alexandre</creator><creator>Argoul, Françoise</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7258-6130</orcidid><orcidid>https://orcid.org/0000-0001-9157-3565</orcidid></search><sort><creationdate>20241201</creationdate><title>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</title><author>Guillet, Alexandre ; Argoul, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications</topic><topic>Coherence</topic><topic>Engineering Sciences</topic><topic>Log-normal wavelet</topic><topic>Medical Physics</topic><topic>Mutual information</topic><topic>Physics</topic><topic>Physiological signals</topic><topic>Polysomnography</topic><topic>Signal and Image processing</topic><topic>Single trial time–frequency statistics</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Time–frequency analysis</topic><topic>Uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillet, Alexandre</creatorcontrib><creatorcontrib>Argoul, Françoise</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillet, Alexandre</au><au>Argoul, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>361</volume><issue>18</issue><spage>107201</spage><pages>107201-</pages><artnum>107201</artnum><issn>0016-0032</issn><abstract>Physiological recordings contain a great deal of information about the underlying dynamics of Life. The practical statistical treatment of these single-trial measurements is often hampered by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for more parsimony, trading off statistical significance for localization. By decomposing signals into time–frequency atoms and recomposing them into local quadratic estimates, we propose a concise and expressive implementation of these fundamental concepts based on the choice of a geometric paradigm and two physical parameters. Starting from the spectrogram based on two fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical estimators provide a minimal and flexible framework for single trial time–frequency statistics, which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG, coherence and mutual information between heart rate and respiration. •T-F decomposition of a signal into uncertainty atoms fixes one physical parameter.•T-F resolution and statistical significance controlled from a pair of quality factors.•Smoothing-based multitaper scalogram and spectrogram estimators applied to EEG.•Coherence significance relates to mutual information estimated in time and frequency.•Slow coherent modes in respiration and heart rate modulations of distinct phases.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfranklin.2024.107201</doi><orcidid>https://orcid.org/0000-0002-7258-6130</orcidid><orcidid>https://orcid.org/0000-0001-9157-3565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2024-12, Vol.361 (18), p.107201, Article 107201
issn 0016-0032
language eng
recordid cdi_hal_primary_oai_HAL_hal_04700580v1
source Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Applications
Coherence
Engineering Sciences
Log-normal wavelet
Medical Physics
Mutual information
Physics
Physiological signals
Polysomnography
Signal and Image processing
Single trial time–frequency statistics
Statistical significance
Statistics
Time–frequency analysis
Uncertainty principle
title Uncertainty and information in physiological signals: Explicit physical trade-off with log-normal wavelets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20and%20information%20in%20physiological%20signals:%20Explicit%20physical%20trade-off%20with%20log-normal%20wavelets&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Guillet,%20Alexandre&rft.date=2024-12-01&rft.volume=361&rft.issue=18&rft.spage=107201&rft.pages=107201-&rft.artnum=107201&rft.issn=0016-0032&rft_id=info:doi/10.1016/j.jfranklin.2024.107201&rft_dat=%3Celsevier_hal_p%3ES0016003224006227%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-5f9db061913b316558079a8b189a57d4d2bd982f8624a2daf175c80239a2a6e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true