Loading…

Dynamic stiffness formulation for circular rings

► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2012-12, Vol.112-113, p.258-265
Main Authors: Tounsi, D., Casimir, J.B., Haddar, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893
cites cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893
container_end_page 265
container_issue
container_start_page 258
container_title Computers & structures
container_volume 112-113
creator Tounsi, D.
Casimir, J.B.
Haddar, M.
description ► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated. This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.
doi_str_mv 10.1016/j.compstruc.2012.08.005
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04707461v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912001939</els_id><sourcerecordid>1365116012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</originalsourceid><addsrcrecordid>eNqFkMlKQzEUhoMoWKvPYDeCLu71ZLgZlsUZCm50HdLTRFPuUJNbwbc3pdKtqzPwnf_AR8glhZoClbfrGoduk8e0xZoBZTXoGqA5IhOqlakYE_yYTABEUykjzCk5y3kNAFIATAjc__SuizjLYwyh9znPwpC6bevGOPS7foYxYZnTLMX-I5-Tk-Da7C_-6pS8Pz683T1Xi9enl7v5okJB2VhRxhGXwnEOJmhh1BJkw1YonKS4Mpxis_RBcYYmBADKJTi21FQLrrXShk_JzT7307V2k2Ln0o8dXLTP84Xd7UAoUELSb1rY6z27ScPX1ufRdjGjb1vX-2GbbUlvKJVFTkHVHsU05Jx8OGRTsDufdm0PPu3OpwVti89yefX3xGV0bUiux5gP50w2RplGFm6-53yx8x19shmj79GvYvI42tUQ__31Cxkjje4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116012</pqid></control><display><type>article</type><title>Dynamic stiffness formulation for circular rings</title><source>ScienceDirect Journals</source><creator>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</creator><creatorcontrib>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</creatorcontrib><description>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated. This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.08.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Circular ring ; Civil Engineering ; Continuous element method ; Curved beam ; Dynamic stiffness method ; Dynamical systems ; Dynamics ; Dynamique, vibrations ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Physics ; Rings (mathematics) ; Solid mechanics ; Stiffness ; Stiffness matrix ; Structural and continuum mechanics ; Structural members ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computers &amp; structures, 2012-12, Vol.112-113, p.258-265</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</citedby><cites>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</cites><orcidid>0000-0002-7052-1763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26597956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04707461$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tounsi, D.</creatorcontrib><creatorcontrib>Casimir, J.B.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><title>Dynamic stiffness formulation for circular rings</title><title>Computers &amp; structures</title><description>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated. This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</description><subject>Circular ring</subject><subject>Civil Engineering</subject><subject>Continuous element method</subject><subject>Curved beam</subject><subject>Dynamic stiffness method</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Dynamique, vibrations</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Rings (mathematics)</subject><subject>Solid mechanics</subject><subject>Stiffness</subject><subject>Stiffness matrix</subject><subject>Structural and continuum mechanics</subject><subject>Structural members</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKQzEUhoMoWKvPYDeCLu71ZLgZlsUZCm50HdLTRFPuUJNbwbc3pdKtqzPwnf_AR8glhZoClbfrGoduk8e0xZoBZTXoGqA5IhOqlakYE_yYTABEUykjzCk5y3kNAFIATAjc__SuizjLYwyh9znPwpC6bevGOPS7foYxYZnTLMX-I5-Tk-Da7C_-6pS8Pz683T1Xi9enl7v5okJB2VhRxhGXwnEOJmhh1BJkw1YonKS4Mpxis_RBcYYmBADKJTi21FQLrrXShk_JzT7307V2k2Ln0o8dXLTP84Xd7UAoUELSb1rY6z27ScPX1ufRdjGjb1vX-2GbbUlvKJVFTkHVHsU05Jx8OGRTsDufdm0PPu3OpwVti89yefX3xGV0bUiux5gP50w2RplGFm6-53yx8x19shmj79GvYvI42tUQ__31Cxkjje4</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Tounsi, D.</creator><creator>Casimir, J.B.</creator><creator>Haddar, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7052-1763</orcidid></search><sort><creationdate>20121201</creationdate><title>Dynamic stiffness formulation for circular rings</title><author>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Circular ring</topic><topic>Civil Engineering</topic><topic>Continuous element method</topic><topic>Curved beam</topic><topic>Dynamic stiffness method</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Dynamique, vibrations</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Rings (mathematics)</topic><topic>Solid mechanics</topic><topic>Stiffness</topic><topic>Stiffness matrix</topic><topic>Structural and continuum mechanics</topic><topic>Structural members</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tounsi, D.</creatorcontrib><creatorcontrib>Casimir, J.B.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tounsi, D.</au><au>Casimir, J.B.</au><au>Haddar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic stiffness formulation for circular rings</atitle><jtitle>Computers &amp; structures</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112-113</volume><spage>258</spage><epage>265</epage><pages>258-265</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated. This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.08.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7052-1763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2012-12, Vol.112-113, p.258-265
issn 0045-7949
1879-2243
language eng
recordid cdi_hal_primary_oai_HAL_hal_04707461v1
source ScienceDirect Journals
subjects Circular ring
Civil Engineering
Continuous element method
Curved beam
Dynamic stiffness method
Dynamical systems
Dynamics
Dynamique, vibrations
Engineering Sciences
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Physics
Rings (mathematics)
Solid mechanics
Stiffness
Stiffness matrix
Structural and continuum mechanics
Structural members
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Dynamic stiffness formulation for circular rings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20stiffness%20formulation%20for%20circular%20rings&rft.jtitle=Computers%20&%20structures&rft.au=Tounsi,%20D.&rft.date=2012-12-01&rft.volume=112-113&rft.spage=258&rft.epage=265&rft.pages=258-265&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.08.005&rft_dat=%3Cproquest_hal_p%3E1365116012%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365116012&rft_id=info:pmid/&rfr_iscdi=true