Loading…
Dynamic stiffness formulation for circular rings
► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases...
Saved in:
Published in: | Computers & structures 2012-12, Vol.112-113, p.258-265 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893 |
container_end_page | 265 |
container_issue | |
container_start_page | 258 |
container_title | Computers & structures |
container_volume | 112-113 |
creator | Tounsi, D. Casimir, J.B. Haddar, M. |
description | ► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated.
This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method. |
doi_str_mv | 10.1016/j.compstruc.2012.08.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04707461v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912001939</els_id><sourcerecordid>1365116012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</originalsourceid><addsrcrecordid>eNqFkMlKQzEUhoMoWKvPYDeCLu71ZLgZlsUZCm50HdLTRFPuUJNbwbc3pdKtqzPwnf_AR8glhZoClbfrGoduk8e0xZoBZTXoGqA5IhOqlakYE_yYTABEUykjzCk5y3kNAFIATAjc__SuizjLYwyh9znPwpC6bevGOPS7foYxYZnTLMX-I5-Tk-Da7C_-6pS8Pz683T1Xi9enl7v5okJB2VhRxhGXwnEOJmhh1BJkw1YonKS4Mpxis_RBcYYmBADKJTi21FQLrrXShk_JzT7307V2k2Ln0o8dXLTP84Xd7UAoUELSb1rY6z27ScPX1ufRdjGjb1vX-2GbbUlvKJVFTkHVHsU05Jx8OGRTsDufdm0PPu3OpwVti89yefX3xGV0bUiux5gP50w2RplGFm6-53yx8x19shmj79GvYvI42tUQ__31Cxkjje4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116012</pqid></control><display><type>article</type><title>Dynamic stiffness formulation for circular rings</title><source>ScienceDirect Journals</source><creator>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</creator><creatorcontrib>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</creatorcontrib><description>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated.
This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.08.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Circular ring ; Civil Engineering ; Continuous element method ; Curved beam ; Dynamic stiffness method ; Dynamical systems ; Dynamics ; Dynamique, vibrations ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Physics ; Rings (mathematics) ; Solid mechanics ; Stiffness ; Stiffness matrix ; Structural and continuum mechanics ; Structural members ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Computers & structures, 2012-12, Vol.112-113, p.258-265</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</citedby><cites>FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</cites><orcidid>0000-0002-7052-1763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26597956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04707461$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tounsi, D.</creatorcontrib><creatorcontrib>Casimir, J.B.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><title>Dynamic stiffness formulation for circular rings</title><title>Computers & structures</title><description>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated.
This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</description><subject>Circular ring</subject><subject>Civil Engineering</subject><subject>Continuous element method</subject><subject>Curved beam</subject><subject>Dynamic stiffness method</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Dynamique, vibrations</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Rings (mathematics)</subject><subject>Solid mechanics</subject><subject>Stiffness</subject><subject>Stiffness matrix</subject><subject>Structural and continuum mechanics</subject><subject>Structural members</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKQzEUhoMoWKvPYDeCLu71ZLgZlsUZCm50HdLTRFPuUJNbwbc3pdKtqzPwnf_AR8glhZoClbfrGoduk8e0xZoBZTXoGqA5IhOqlakYE_yYTABEUykjzCk5y3kNAFIATAjc__SuizjLYwyh9znPwpC6bevGOPS7foYxYZnTLMX-I5-Tk-Da7C_-6pS8Pz683T1Xi9enl7v5okJB2VhRxhGXwnEOJmhh1BJkw1YonKS4Mpxis_RBcYYmBADKJTi21FQLrrXShk_JzT7307V2k2Ln0o8dXLTP84Xd7UAoUELSb1rY6z27ScPX1ufRdjGjb1vX-2GbbUlvKJVFTkHVHsU05Jx8OGRTsDufdm0PPu3OpwVti89yefX3xGV0bUiux5gP50w2RplGFm6-53yx8x19shmj79GvYvI42tUQ__31Cxkjje4</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Tounsi, D.</creator><creator>Casimir, J.B.</creator><creator>Haddar, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7052-1763</orcidid></search><sort><creationdate>20121201</creationdate><title>Dynamic stiffness formulation for circular rings</title><author>Tounsi, D. ; Casimir, J.B. ; Haddar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Circular ring</topic><topic>Civil Engineering</topic><topic>Continuous element method</topic><topic>Curved beam</topic><topic>Dynamic stiffness method</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Dynamique, vibrations</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Rings (mathematics)</topic><topic>Solid mechanics</topic><topic>Stiffness</topic><topic>Stiffness matrix</topic><topic>Structural and continuum mechanics</topic><topic>Structural members</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tounsi, D.</creatorcontrib><creatorcontrib>Casimir, J.B.</creatorcontrib><creatorcontrib>Haddar, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tounsi, D.</au><au>Casimir, J.B.</au><au>Haddar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic stiffness formulation for circular rings</atitle><jtitle>Computers & structures</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112-113</volume><spage>258</spage><epage>265</epage><pages>258-265</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► We present a procedure for calculating the dynamic stiffness matrix of circular rings. ► The numerical validation is achieved thanks to comparisons with FE results. ► The performances of the method are evaluated in the case of thick circular rings. ► Harmonic responses for two kinds of load cases are estimated.
This paper describes a procedure for calculating the dynamic stiffness matrix of a circular ring. The basis of the dynamic stiffness method resides in determining the dynamic stiffness matrix of such structural elements. The solution of the elementary problem is derived using Hamilton’s principle and a Fourier series expansion of the solution. Concentrated and distributed loads are applied to the ring along several directions in order to determine the response of the system. The performances of the method are evaluated using comparisons with the harmonic responses of a circular ring obtained using the finite element method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.08.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7052-1763</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2012-12, Vol.112-113, p.258-265 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04707461v1 |
source | ScienceDirect Journals |
subjects | Circular ring Civil Engineering Continuous element method Curved beam Dynamic stiffness method Dynamical systems Dynamics Dynamique, vibrations Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Physics Rings (mathematics) Solid mechanics Stiffness Stiffness matrix Structural and continuum mechanics Structural members Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Dynamic stiffness formulation for circular rings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20stiffness%20formulation%20for%20circular%20rings&rft.jtitle=Computers%20&%20structures&rft.au=Tounsi,%20D.&rft.date=2012-12-01&rft.volume=112-113&rft.spage=258&rft.epage=265&rft.pages=258-265&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.08.005&rft_dat=%3Cproquest_hal_p%3E1365116012%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-123ccb4a3309f8497b0652dc4a61cd931c5bef732c9ff001360a2b81843887893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365116012&rft_id=info:pmid/&rfr_iscdi=true |