Loading…
A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits
Genotyping‐by‐sequencing methods such as RADseq are popular for generating genomic and population‐scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared...
Saved in:
Published in: | Molecular ecology resources 2021-05, Vol.21 (4), p.1085-1097 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3 |
container_end_page | 1097 |
container_issue | 4 |
container_start_page | 1085 |
container_title | Molecular ecology resources |
container_volume | 21 |
creator | Heller, Rasmus Nursyifa, Casia Garcia‐Erill, Genís Salmona, Jordi Chikhi, Lounes Meisner, Jonas Korneliussen, Thorfinn Sand Albrechtsen, Anders |
description | Genotyping‐by‐sequencing methods such as RADseq are popular for generating genomic and population‐scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference‐free RADseq data processing that blends de novo elements from STACKS with the full suite of state‐of‐the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth‐of‐coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2–4x). We compared the RADseq SFS with medium‐depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data. |
doi_str_mv | 10.1111/1755-0998.13324 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04717371v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511165594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3</originalsourceid><addsrcrecordid>eNqFkctOxCAUhonReF-7MyRudDEKBcqwnHhPRk2MJu4IbQ9a7ZQRWnV2PoLP6JNIrc7CjbCAnHz8OZwPoS1K9mlcB1QKMSBKDfcpYwlfQKvzyuL8PrxbQWshPBKSEiX5MlphjMedqFUEI-zBgoc6h8_3D-sBsJlOvTP5A24cNrWpZgHw9egowDMuTGNwG8r6HofG1IXxBa7hrcH3UIM3TelqHLk2xnVM41z1VDZhAy1ZUwXY_DnX0e3J8c3h2WB8dXp-OBoPck4EH3CZyUwBF0POlbWWMptIVVjBVMIym6WMDIuECkE4tSAylQhTmISLVApI84yto70-98FUeurLifEz7Uypz0Zj3dUIl1QySV9oZHd7Nn42NhwaPSlDDlVlanBt0AmXkivFZBrRnT_oo2t9nEykRNSQCqF4pA56KvcuhDjVeQeU6M6W7nzozo3-thVfbP_kttkEijn_qycCogdeywpm_-Xpi-PLPvgLwhueUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511165594</pqid></control><display><type>article</type><title>A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Heller, Rasmus ; Nursyifa, Casia ; Garcia‐Erill, Genís ; Salmona, Jordi ; Chikhi, Lounes ; Meisner, Jonas ; Korneliussen, Thorfinn Sand ; Albrechtsen, Anders</creator><creatorcontrib>Heller, Rasmus ; Nursyifa, Casia ; Garcia‐Erill, Genís ; Salmona, Jordi ; Chikhi, Lounes ; Meisner, Jonas ; Korneliussen, Thorfinn Sand ; Albrechtsen, Anders</creatorcontrib><description>Genotyping‐by‐sequencing methods such as RADseq are popular for generating genomic and population‐scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference‐free RADseq data processing that blends de novo elements from STACKS with the full suite of state‐of‐the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth‐of‐coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2–4x). We compared the RADseq SFS with medium‐depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13324</identifier><identifier>PMID: 33434329</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>allelic dropout ; Data processing ; Environmental Sciences ; Frequency spectrum ; Gene mapping ; genetic diversity ; genotype calling ; genotype likelihood ; Genotypes ; Genotyping ; Heterozygosity ; Next-generation sequencing ; Pipelines ; RADseq ; site frequency spectrum ; Stacks ; Toolkits</subject><ispartof>Molecular ecology resources, 2021-05, Vol.21 (4), p.1085-1097</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>2021 John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3</citedby><cites>FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3</cites><orcidid>0000-0002-9540-6673 ; 0000-0002-7803-9664 ; 0000-0002-1140-0718 ; 0000-0001-6583-6923 ; 0000-0003-3150-1708 ; 0000-0001-7306-031X ; 0000-0001-7576-5380 ; 0000-0002-1950-5805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33434329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04717371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Heller, Rasmus</creatorcontrib><creatorcontrib>Nursyifa, Casia</creatorcontrib><creatorcontrib>Garcia‐Erill, Genís</creatorcontrib><creatorcontrib>Salmona, Jordi</creatorcontrib><creatorcontrib>Chikhi, Lounes</creatorcontrib><creatorcontrib>Meisner, Jonas</creatorcontrib><creatorcontrib>Korneliussen, Thorfinn Sand</creatorcontrib><creatorcontrib>Albrechtsen, Anders</creatorcontrib><title>A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Genotyping‐by‐sequencing methods such as RADseq are popular for generating genomic and population‐scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference‐free RADseq data processing that blends de novo elements from STACKS with the full suite of state‐of‐the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth‐of‐coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2–4x). We compared the RADseq SFS with medium‐depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.</description><subject>allelic dropout</subject><subject>Data processing</subject><subject>Environmental Sciences</subject><subject>Frequency spectrum</subject><subject>Gene mapping</subject><subject>genetic diversity</subject><subject>genotype calling</subject><subject>genotype likelihood</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Heterozygosity</subject><subject>Next-generation sequencing</subject><subject>Pipelines</subject><subject>RADseq</subject><subject>site frequency spectrum</subject><subject>Stacks</subject><subject>Toolkits</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctOxCAUhonReF-7MyRudDEKBcqwnHhPRk2MJu4IbQ9a7ZQRWnV2PoLP6JNIrc7CjbCAnHz8OZwPoS1K9mlcB1QKMSBKDfcpYwlfQKvzyuL8PrxbQWshPBKSEiX5MlphjMedqFUEI-zBgoc6h8_3D-sBsJlOvTP5A24cNrWpZgHw9egowDMuTGNwG8r6HofG1IXxBa7hrcH3UIM3TelqHLk2xnVM41z1VDZhAy1ZUwXY_DnX0e3J8c3h2WB8dXp-OBoPck4EH3CZyUwBF0POlbWWMptIVVjBVMIym6WMDIuECkE4tSAylQhTmISLVApI84yto70-98FUeurLifEz7Uypz0Zj3dUIl1QySV9oZHd7Nn42NhwaPSlDDlVlanBt0AmXkivFZBrRnT_oo2t9nEykRNSQCqF4pA56KvcuhDjVeQeU6M6W7nzozo3-thVfbP_kttkEijn_qycCogdeywpm_-Xpi-PLPvgLwhueUg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Heller, Rasmus</creator><creator>Nursyifa, Casia</creator><creator>Garcia‐Erill, Genís</creator><creator>Salmona, Jordi</creator><creator>Chikhi, Lounes</creator><creator>Meisner, Jonas</creator><creator>Korneliussen, Thorfinn Sand</creator><creator>Albrechtsen, Anders</creator><general>Wiley Subscription Services, Inc</general><general>Wiley/Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9540-6673</orcidid><orcidid>https://orcid.org/0000-0002-7803-9664</orcidid><orcidid>https://orcid.org/0000-0002-1140-0718</orcidid><orcidid>https://orcid.org/0000-0001-6583-6923</orcidid><orcidid>https://orcid.org/0000-0003-3150-1708</orcidid><orcidid>https://orcid.org/0000-0001-7306-031X</orcidid><orcidid>https://orcid.org/0000-0001-7576-5380</orcidid><orcidid>https://orcid.org/0000-0002-1950-5805</orcidid></search><sort><creationdate>202105</creationdate><title>A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits</title><author>Heller, Rasmus ; Nursyifa, Casia ; Garcia‐Erill, Genís ; Salmona, Jordi ; Chikhi, Lounes ; Meisner, Jonas ; Korneliussen, Thorfinn Sand ; Albrechtsen, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>allelic dropout</topic><topic>Data processing</topic><topic>Environmental Sciences</topic><topic>Frequency spectrum</topic><topic>Gene mapping</topic><topic>genetic diversity</topic><topic>genotype calling</topic><topic>genotype likelihood</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Heterozygosity</topic><topic>Next-generation sequencing</topic><topic>Pipelines</topic><topic>RADseq</topic><topic>site frequency spectrum</topic><topic>Stacks</topic><topic>Toolkits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heller, Rasmus</creatorcontrib><creatorcontrib>Nursyifa, Casia</creatorcontrib><creatorcontrib>Garcia‐Erill, Genís</creatorcontrib><creatorcontrib>Salmona, Jordi</creatorcontrib><creatorcontrib>Chikhi, Lounes</creatorcontrib><creatorcontrib>Meisner, Jonas</creatorcontrib><creatorcontrib>Korneliussen, Thorfinn Sand</creatorcontrib><creatorcontrib>Albrechtsen, Anders</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heller, Rasmus</au><au>Nursyifa, Casia</au><au>Garcia‐Erill, Genís</au><au>Salmona, Jordi</au><au>Chikhi, Lounes</au><au>Meisner, Jonas</au><au>Korneliussen, Thorfinn Sand</au><au>Albrechtsen, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2021-05</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>1085</spage><epage>1097</epage><pages>1085-1097</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Genotyping‐by‐sequencing methods such as RADseq are popular for generating genomic and population‐scale data sets from a diverse range of organisms. These often lack a usable reference genome, restricting users to RADseq specific software for processing. However, these come with limitations compared to generic next generation sequencing (NGS) toolkits. Here, we describe and test a simple pipeline for reference‐free RADseq data processing that blends de novo elements from STACKS with the full suite of state‐of‐the art NGS tools. Specifically, we use the de novo RADseq assembly employed by STACKS to create a catalogue of RAD loci that serves as a reference for read mapping, variant calling and site filters. Using RADseq data from 28 zebra sequenced to ~8x depth‐of‐coverage we evaluate our approach by comparing the site frequency spectra (SFS) to those from alternative pipelines. Most pipelines yielded similar SFS at 8x depth, but only a genotype likelihood based pipeline performed similarly at low sequencing depth (2–4x). We compared the RADseq SFS with medium‐depth (~13x) shotgun sequencing of eight overlapping samples, revealing that the RADseq SFS was persistently slightly skewed towards rare and invariant alleles. Using simulations and human data we confirm that this is expected when there is allelic dropout (AD) in the RADseq data. AD in the RADseq data caused a heterozygosity deficit of ~16%, which dropped to ~5% after filtering AD. Hence, AD was the most important source of bias in our RADseq data.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33434329</pmid><doi>10.1111/1755-0998.13324</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9540-6673</orcidid><orcidid>https://orcid.org/0000-0002-7803-9664</orcidid><orcidid>https://orcid.org/0000-0002-1140-0718</orcidid><orcidid>https://orcid.org/0000-0001-6583-6923</orcidid><orcidid>https://orcid.org/0000-0003-3150-1708</orcidid><orcidid>https://orcid.org/0000-0001-7306-031X</orcidid><orcidid>https://orcid.org/0000-0001-7576-5380</orcidid><orcidid>https://orcid.org/0000-0002-1950-5805</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2021-05, Vol.21 (4), p.1085-1097 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04717371v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | allelic dropout Data processing Environmental Sciences Frequency spectrum Gene mapping genetic diversity genotype calling genotype likelihood Genotypes Genotyping Heterozygosity Next-generation sequencing Pipelines RADseq site frequency spectrum Stacks Toolkits |
title | A reference‐free approach to analyse RADseq data using standard next generation sequencing toolkits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reference%E2%80%90free%20approach%20to%20analyse%20RADseq%20data%20using%20standard%20next%20generation%20sequencing%20toolkits&rft.jtitle=Molecular%20ecology%20resources&rft.au=Heller,%20Rasmus&rft.date=2021-05&rft.volume=21&rft.issue=4&rft.spage=1085&rft.epage=1097&rft.pages=1085-1097&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13324&rft_dat=%3Cproquest_hal_p%3E2511165594%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4054-47b7b9e458449fff13f279df53923bfb6308d2155041fe5b925ada245675e6cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2511165594&rft_id=info:pmid/33434329&rfr_iscdi=true |