Loading…
Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures
A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically...
Saved in:
Published in: | Computers & structures 2003-07, Vol.81 (15), p.1513-1523 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3 |
container_end_page | 1523 |
container_issue | 15 |
container_start_page | 1513 |
container_title | Computers & structures |
container_volume | 81 |
creator | Muravyov, Alexander A Rizzi, Stephen A |
description | A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented. |
doi_str_mv | 10.1016/S0045-7949(03)00145-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04731378v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794903001457</els_id><sourcerecordid>27855187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVJodu0H6HgU0kOTkaW_O8UljTJBhZ6aHIWY3nUqNjSVtJuyLevHYeFnnIaZvi9B_MeY984XHDg1eUvAFnmdSvbMxDnAHzePrAVb-o2LwopTtjqiHxin2P8AwCVBFgx_4MShdE6TNa7zJvMeTdYRxiymKwxjmLMnm16ynC3G6xeuOSzgK73Y3awXThqf5MfKYWJGoaX_5zCXqd9oPiFfTQ4RPr6Nk_Z4-3Nw_Um3_68u79eb3MtC5nyDhE7TdC2lWmlFFRhz7GpqDR932FvWi3qjrAwQrZVI6iBypDuoEDRyL4Tp-x88X3CQe2CHTG8KI9WbdZbNd9A1oKLujnwif2-sLvg_-4pJjXaqGkY0JHfR1XUTVlOYU5guYA6-BgDmaMzBzVXoV6rUHPOCoR6rULNuqtFR9PHB0tBRW3JaeptIJ1U7-07Dv8AhH2Ujg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27855187</pqid></control><display><type>article</type><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><source>ScienceDirect Journals</source><creator>Muravyov, Alexander A ; Rizzi, Stephen A</creator><creatorcontrib>Muravyov, Alexander A ; Rizzi, Stephen A</creatorcontrib><description>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(03)00145-7</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Engineering Sciences ; Equivalent linearization ; Geometric nonlinearity ; Mechanics ; Nonlinear dynamics ; Nonlinear stiffness ; Random vibration</subject><ispartof>Computers & structures, 2003-07, Vol.81 (15), p.1513-1523</ispartof><rights>2003</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</citedby><cites>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04731378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muravyov, Alexander A</creatorcontrib><creatorcontrib>Rizzi, Stephen A</creatorcontrib><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><title>Computers & structures</title><description>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</description><subject>Engineering Sciences</subject><subject>Equivalent linearization</subject><subject>Geometric nonlinearity</subject><subject>Mechanics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear stiffness</subject><subject>Random vibration</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVJodu0H6HgU0kOTkaW_O8UljTJBhZ6aHIWY3nUqNjSVtJuyLevHYeFnnIaZvi9B_MeY984XHDg1eUvAFnmdSvbMxDnAHzePrAVb-o2LwopTtjqiHxin2P8AwCVBFgx_4MShdE6TNa7zJvMeTdYRxiymKwxjmLMnm16ynC3G6xeuOSzgK73Y3awXThqf5MfKYWJGoaX_5zCXqd9oPiFfTQ4RPr6Nk_Z4-3Nw_Um3_68u79eb3MtC5nyDhE7TdC2lWmlFFRhz7GpqDR932FvWi3qjrAwQrZVI6iBypDuoEDRyL4Tp-x88X3CQe2CHTG8KI9WbdZbNd9A1oKLujnwif2-sLvg_-4pJjXaqGkY0JHfR1XUTVlOYU5guYA6-BgDmaMzBzVXoV6rUHPOCoR6rULNuqtFR9PHB0tBRW3JaeptIJ1U7-07Dv8AhH2Ujg</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Muravyov, Alexander A</creator><creator>Rizzi, Stephen A</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20030701</creationdate><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><author>Muravyov, Alexander A ; Rizzi, Stephen A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Engineering Sciences</topic><topic>Equivalent linearization</topic><topic>Geometric nonlinearity</topic><topic>Mechanics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear stiffness</topic><topic>Random vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muravyov, Alexander A</creatorcontrib><creatorcontrib>Rizzi, Stephen A</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muravyov, Alexander A</au><au>Rizzi, Stephen A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</atitle><jtitle>Computers & structures</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>81</volume><issue>15</issue><spage>1513</spage><epage>1523</epage><pages>1513-1523</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(03)00145-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2003-07, Vol.81 (15), p.1513-1523 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04731378v1 |
source | ScienceDirect Journals |
subjects | Engineering Sciences Equivalent linearization Geometric nonlinearity Mechanics Nonlinear dynamics Nonlinear stiffness Random vibration |
title | Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20nonlinear%20stiffness%20with%20application%20to%20random%20vibration%20of%20geometrically%20nonlinear%20structures&rft.jtitle=Computers%20&%20structures&rft.au=Muravyov,%20Alexander%20A&rft.date=2003-07-01&rft.volume=81&rft.issue=15&rft.spage=1513&rft.epage=1523&rft.pages=1513-1523&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(03)00145-7&rft_dat=%3Cproquest_hal_p%3E27855187%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27855187&rft_id=info:pmid/&rfr_iscdi=true |