Loading…

Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures

A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2003-07, Vol.81 (15), p.1513-1523
Main Authors: Muravyov, Alexander A, Rizzi, Stephen A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3
cites cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3
container_end_page 1523
container_issue 15
container_start_page 1513
container_title Computers & structures
container_volume 81
creator Muravyov, Alexander A
Rizzi, Stephen A
description A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.
doi_str_mv 10.1016/S0045-7949(03)00145-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04731378v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794903001457</els_id><sourcerecordid>27855187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVJodu0H6HgU0kOTkaW_O8UljTJBhZ6aHIWY3nUqNjSVtJuyLevHYeFnnIaZvi9B_MeY984XHDg1eUvAFnmdSvbMxDnAHzePrAVb-o2LwopTtjqiHxin2P8AwCVBFgx_4MShdE6TNa7zJvMeTdYRxiymKwxjmLMnm16ynC3G6xeuOSzgK73Y3awXThqf5MfKYWJGoaX_5zCXqd9oPiFfTQ4RPr6Nk_Z4-3Nw_Um3_68u79eb3MtC5nyDhE7TdC2lWmlFFRhz7GpqDR932FvWi3qjrAwQrZVI6iBypDuoEDRyL4Tp-x88X3CQe2CHTG8KI9WbdZbNd9A1oKLujnwif2-sLvg_-4pJjXaqGkY0JHfR1XUTVlOYU5guYA6-BgDmaMzBzVXoV6rUHPOCoR6rULNuqtFR9PHB0tBRW3JaeptIJ1U7-07Dv8AhH2Ujg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27855187</pqid></control><display><type>article</type><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><source>ScienceDirect Journals</source><creator>Muravyov, Alexander A ; Rizzi, Stephen A</creator><creatorcontrib>Muravyov, Alexander A ; Rizzi, Stephen A</creatorcontrib><description>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/S0045-7949(03)00145-7</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Engineering Sciences ; Equivalent linearization ; Geometric nonlinearity ; Mechanics ; Nonlinear dynamics ; Nonlinear stiffness ; Random vibration</subject><ispartof>Computers &amp; structures, 2003-07, Vol.81 (15), p.1513-1523</ispartof><rights>2003</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</citedby><cites>FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04731378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muravyov, Alexander A</creatorcontrib><creatorcontrib>Rizzi, Stephen A</creatorcontrib><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><title>Computers &amp; structures</title><description>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</description><subject>Engineering Sciences</subject><subject>Equivalent linearization</subject><subject>Geometric nonlinearity</subject><subject>Mechanics</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear stiffness</subject><subject>Random vibration</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVJodu0H6HgU0kOTkaW_O8UljTJBhZ6aHIWY3nUqNjSVtJuyLevHYeFnnIaZvi9B_MeY984XHDg1eUvAFnmdSvbMxDnAHzePrAVb-o2LwopTtjqiHxin2P8AwCVBFgx_4MShdE6TNa7zJvMeTdYRxiymKwxjmLMnm16ynC3G6xeuOSzgK73Y3awXThqf5MfKYWJGoaX_5zCXqd9oPiFfTQ4RPr6Nk_Z4-3Nw_Um3_68u79eb3MtC5nyDhE7TdC2lWmlFFRhz7GpqDR932FvWi3qjrAwQrZVI6iBypDuoEDRyL4Tp-x88X3CQe2CHTG8KI9WbdZbNd9A1oKLujnwif2-sLvg_-4pJjXaqGkY0JHfR1XUTVlOYU5guYA6-BgDmaMzBzVXoV6rUHPOCoR6rULNuqtFR9PHB0tBRW3JaeptIJ1U7-07Dv8AhH2Ujg</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Muravyov, Alexander A</creator><creator>Rizzi, Stephen A</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20030701</creationdate><title>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</title><author>Muravyov, Alexander A ; Rizzi, Stephen A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Engineering Sciences</topic><topic>Equivalent linearization</topic><topic>Geometric nonlinearity</topic><topic>Mechanics</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear stiffness</topic><topic>Random vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muravyov, Alexander A</creatorcontrib><creatorcontrib>Rizzi, Stephen A</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muravyov, Alexander A</au><au>Rizzi, Stephen A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures</atitle><jtitle>Computers &amp; structures</jtitle><date>2003-07-01</date><risdate>2003</risdate><volume>81</volume><issue>15</issue><spage>1513</spage><epage>1523</epage><pages>1513-1523</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>A novel method for determining the nonlinear modal stiffness coefficients for an arbitrary finite element model is presented. The method is applicable to a wide class of problems exhibiting bending-membrane coupling and is suitable for use with commercial finite element codes having a geometrically nonlinear static capability. The equations of motion are written in modal coordinates with the nonlinear stiffness force components written as the product of second and third order modal displacements multiplied by unknown coefficients. Prescription of particular displacement fields renders a series of inverse linear and nonlinear static problems, which are solved to determine the unknown coefficients. Verification of stiffness coefficients found using this method and their use in equivalent linearization random vibration analysis are presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0045-7949(03)00145-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2003-07, Vol.81 (15), p.1513-1523
issn 0045-7949
1879-2243
language eng
recordid cdi_hal_primary_oai_HAL_hal_04731378v1
source ScienceDirect Journals
subjects Engineering Sciences
Equivalent linearization
Geometric nonlinearity
Mechanics
Nonlinear dynamics
Nonlinear stiffness
Random vibration
title Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20nonlinear%20stiffness%20with%20application%20to%20random%20vibration%20of%20geometrically%20nonlinear%20structures&rft.jtitle=Computers%20&%20structures&rft.au=Muravyov,%20Alexander%20A&rft.date=2003-07-01&rft.volume=81&rft.issue=15&rft.spage=1513&rft.epage=1523&rft.pages=1513-1523&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/S0045-7949(03)00145-7&rft_dat=%3Cproquest_hal_p%3E27855187%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-baaabce0996f9443e6ad1a86e5fddbadf9c37bea2f349683e806fecb02a384db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27855187&rft_id=info:pmid/&rfr_iscdi=true