Loading…

A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications

•A simplified ω-ALDF rank-correlated FSK model is proposed for combustion applications.•Model validation over axisymmetric turbulent flames covering a wide range of conditions.•Predictions are within 4 % of the reference solution obtained form a NBCK model.•The model avoids the specification of an a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 2024-08, Vol.322, p.109034, Article 109034
Main Authors: Consalvi, Jean-Louis, Nmira, Fatiha, André, Frédéric, Solovjov, Vladimir P., Webb, Brent W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3
cites cdi_FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3
container_end_page
container_issue
container_start_page 109034
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 322
creator Consalvi, Jean-Louis
Nmira, Fatiha
André, Frédéric
Solovjov, Vladimir P.
Webb, Brent W.
description •A simplified ω-ALDF rank-correlated FSK model is proposed for combustion applications.•Model validation over axisymmetric turbulent flames covering a wide range of conditions.•Predictions are within 4 % of the reference solution obtained form a NBCK model.•The model avoids the specification of an arbitrary blackbody source temperature.•The model allows to develop a specific storage strategy for CFD simulations. The objective of this paper is to present a method that allows simplifying the use of ω-absorption line distribution functions (ω-ALDF) inside rank correlated full-spectrum k-distribution (RCFSK) models for application in combustion problems. In this simplified version, the ω-ALDF is constructed without any a priori information on the problem treated. It can be used directly but, in order to simplify further the concept for possible users, we suggest here approximating this ω-ALDF using an Absorption Line Blackbody Distribution Function (ALBDF) at a temperature defined in terms of the ω-ALDF. The method is validated in some combustion scenarios. The model is assessed by comparison with a narrow band correlated-k (NBCK) model through decoupled radiative simulations of eight turbulent axisymmetric non-premixed jet flames covering a wide range of optical-thicknesses and contributions of soot to radiation. The predictions are within 4 % of the reference solution. A consequence of the proposed approach is that the FSCK parameters, namely the absorption coefficient and the stretching function, depends only on local variables. This allows one to forgo the specification of an arbitrary blackbody source temperature, and to develop a specific storage strategy to provide an efficient model for Computational Fluid Dynamics (CFD) simulations of combustion problems.
doi_str_mv 10.1016/j.jqsrt.2024.109034
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04740721v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407324001419</els_id><sourcerecordid>oai_HAL_hal_04740721v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnBGyyZeEy_mnSLFhUhVKkSGxgbTmOLZwmdbCTShyB03ElnAaxZDWjp_dG8z6EbgjMCZD0rp7XH8H3cwqURyUHxk_QjCyzHBO2oKdoBkAp5pCxc3QRQg0AjJF0htQqCbbtGmusrpLvL7wqHjaJl_sdVs573cg-6mZoGhw6rXo_tMkOVzb03pZDb90-aV2lm8Q4nyjXlkM4irKLN5Uc93CFzoxsgr7-nZfobfP4ut7i4uXpeb0qsGIs63FZGgoyJXlasvE_DYRXWlGlDec5Bw7MpExyCbEGldosl6Riki1AZ6Viml2i2-nuu2xE520r_adw0ortqhCjBjyLCCg5kOhlk1d5F4LX5i9AQIxMRS2OTMXIVExMY-p-SulY42C1F0FZvVe6sj7CEZWz_-Z_AAEdgf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Consalvi, Jean-Louis ; Nmira, Fatiha ; André, Frédéric ; Solovjov, Vladimir P. ; Webb, Brent W.</creator><creatorcontrib>Consalvi, Jean-Louis ; Nmira, Fatiha ; André, Frédéric ; Solovjov, Vladimir P. ; Webb, Brent W.</creatorcontrib><description>•A simplified ω-ALDF rank-correlated FSK model is proposed for combustion applications.•Model validation over axisymmetric turbulent flames covering a wide range of conditions.•Predictions are within 4 % of the reference solution obtained form a NBCK model.•The model avoids the specification of an arbitrary blackbody source temperature.•The model allows to develop a specific storage strategy for CFD simulations. The objective of this paper is to present a method that allows simplifying the use of ω-absorption line distribution functions (ω-ALDF) inside rank correlated full-spectrum k-distribution (RCFSK) models for application in combustion problems. In this simplified version, the ω-ALDF is constructed without any a priori information on the problem treated. It can be used directly but, in order to simplify further the concept for possible users, we suggest here approximating this ω-ALDF using an Absorption Line Blackbody Distribution Function (ALBDF) at a temperature defined in terms of the ω-ALDF. The method is validated in some combustion scenarios. The model is assessed by comparison with a narrow band correlated-k (NBCK) model through decoupled radiative simulations of eight turbulent axisymmetric non-premixed jet flames covering a wide range of optical-thicknesses and contributions of soot to radiation. The predictions are within 4 % of the reference solution. A consequence of the proposed approach is that the FSCK parameters, namely the absorption coefficient and the stretching function, depends only on local variables. This allows one to forgo the specification of an arbitrary blackbody source temperature, and to develop a specific storage strategy to provide an efficient model for Computational Fluid Dynamics (CFD) simulations of combustion problems.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2024.109034</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Combustion applications ; Engineering Sciences ; Gas radiative property model ; RCFSK ; Reactive fluid environment ; ω-ALDF</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2024-08, Vol.322, p.109034, Article 109034</ispartof><rights>2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3</citedby><cites>FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04740721$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Consalvi, Jean-Louis</creatorcontrib><creatorcontrib>Nmira, Fatiha</creatorcontrib><creatorcontrib>André, Frédéric</creatorcontrib><creatorcontrib>Solovjov, Vladimir P.</creatorcontrib><creatorcontrib>Webb, Brent W.</creatorcontrib><title>A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>•A simplified ω-ALDF rank-correlated FSK model is proposed for combustion applications.•Model validation over axisymmetric turbulent flames covering a wide range of conditions.•Predictions are within 4 % of the reference solution obtained form a NBCK model.•The model avoids the specification of an arbitrary blackbody source temperature.•The model allows to develop a specific storage strategy for CFD simulations. The objective of this paper is to present a method that allows simplifying the use of ω-absorption line distribution functions (ω-ALDF) inside rank correlated full-spectrum k-distribution (RCFSK) models for application in combustion problems. In this simplified version, the ω-ALDF is constructed without any a priori information on the problem treated. It can be used directly but, in order to simplify further the concept for possible users, we suggest here approximating this ω-ALDF using an Absorption Line Blackbody Distribution Function (ALBDF) at a temperature defined in terms of the ω-ALDF. The method is validated in some combustion scenarios. The model is assessed by comparison with a narrow band correlated-k (NBCK) model through decoupled radiative simulations of eight turbulent axisymmetric non-premixed jet flames covering a wide range of optical-thicknesses and contributions of soot to radiation. The predictions are within 4 % of the reference solution. A consequence of the proposed approach is that the FSCK parameters, namely the absorption coefficient and the stretching function, depends only on local variables. This allows one to forgo the specification of an arbitrary blackbody source temperature, and to develop a specific storage strategy to provide an efficient model for Computational Fluid Dynamics (CFD) simulations of combustion problems.</description><subject>Combustion applications</subject><subject>Engineering Sciences</subject><subject>Gas radiative property model</subject><subject>RCFSK</subject><subject>Reactive fluid environment</subject><subject>ω-ALDF</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEuXnBGyyZeEy_mnSLFhUhVKkSGxgbTmOLZwmdbCTShyB03ElnAaxZDWjp_dG8z6EbgjMCZD0rp7XH8H3cwqURyUHxk_QjCyzHBO2oKdoBkAp5pCxc3QRQg0AjJF0htQqCbbtGmusrpLvL7wqHjaJl_sdVs573cg-6mZoGhw6rXo_tMkOVzb03pZDb90-aV2lm8Q4nyjXlkM4irKLN5Uc93CFzoxsgr7-nZfobfP4ut7i4uXpeb0qsGIs63FZGgoyJXlasvE_DYRXWlGlDec5Bw7MpExyCbEGldosl6Riki1AZ6Viml2i2-nuu2xE520r_adw0ortqhCjBjyLCCg5kOhlk1d5F4LX5i9AQIxMRS2OTMXIVExMY-p-SulY42C1F0FZvVe6sj7CEZWz_-Z_AAEdgf8</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Consalvi, Jean-Louis</creator><creator>Nmira, Fatiha</creator><creator>André, Frédéric</creator><creator>Solovjov, Vladimir P.</creator><creator>Webb, Brent W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202408</creationdate><title>A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications</title><author>Consalvi, Jean-Louis ; Nmira, Fatiha ; André, Frédéric ; Solovjov, Vladimir P. ; Webb, Brent W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combustion applications</topic><topic>Engineering Sciences</topic><topic>Gas radiative property model</topic><topic>RCFSK</topic><topic>Reactive fluid environment</topic><topic>ω-ALDF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Consalvi, Jean-Louis</creatorcontrib><creatorcontrib>Nmira, Fatiha</creatorcontrib><creatorcontrib>André, Frédéric</creatorcontrib><creatorcontrib>Solovjov, Vladimir P.</creatorcontrib><creatorcontrib>Webb, Brent W.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Consalvi, Jean-Louis</au><au>Nmira, Fatiha</au><au>André, Frédéric</au><au>Solovjov, Vladimir P.</au><au>Webb, Brent W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2024-08</date><risdate>2024</risdate><volume>322</volume><spage>109034</spage><pages>109034-</pages><artnum>109034</artnum><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>•A simplified ω-ALDF rank-correlated FSK model is proposed for combustion applications.•Model validation over axisymmetric turbulent flames covering a wide range of conditions.•Predictions are within 4 % of the reference solution obtained form a NBCK model.•The model avoids the specification of an arbitrary blackbody source temperature.•The model allows to develop a specific storage strategy for CFD simulations. The objective of this paper is to present a method that allows simplifying the use of ω-absorption line distribution functions (ω-ALDF) inside rank correlated full-spectrum k-distribution (RCFSK) models for application in combustion problems. In this simplified version, the ω-ALDF is constructed without any a priori information on the problem treated. It can be used directly but, in order to simplify further the concept for possible users, we suggest here approximating this ω-ALDF using an Absorption Line Blackbody Distribution Function (ALBDF) at a temperature defined in terms of the ω-ALDF. The method is validated in some combustion scenarios. The model is assessed by comparison with a narrow band correlated-k (NBCK) model through decoupled radiative simulations of eight turbulent axisymmetric non-premixed jet flames covering a wide range of optical-thicknesses and contributions of soot to radiation. The predictions are within 4 % of the reference solution. A consequence of the proposed approach is that the FSCK parameters, namely the absorption coefficient and the stretching function, depends only on local variables. This allows one to forgo the specification of an arbitrary blackbody source temperature, and to develop a specific storage strategy to provide an efficient model for Computational Fluid Dynamics (CFD) simulations of combustion problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2024.109034</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2024-08, Vol.322, p.109034, Article 109034
issn 0022-4073
1879-1352
language eng
recordid cdi_hal_primary_oai_HAL_hal_04740721v1
source ScienceDirect Freedom Collection 2022-2024
subjects Combustion applications
Engineering Sciences
Gas radiative property model
RCFSK
Reactive fluid environment
ω-ALDF
title A simplified ω-ALDF rank-correlated full-spectrum k-distribution model for combustion applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simplified%20%CF%89-ALDF%20rank-correlated%20full-spectrum%20k-distribution%20model%20for%20combustion%20applications&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Consalvi,%20Jean-Louis&rft.date=2024-08&rft.volume=322&rft.spage=109034&rft.pages=109034-&rft.artnum=109034&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2024.109034&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04740721v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-bbf20a6196b30003e014dec2cef44940403f63a4a00732aef881d3a350e7bc3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true