Loading…

Transforming Nanocrystals into Superhard Boron Carbide Nanostructures

Boron carbide (B4+δC) possesses a large potential as a structural material owing to its lightness, refractory character, and outstanding mechanical properties. However, its large-scale industrialization is set back by its tendency to amorphize when subjected to an external stress. In the present wor...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2024-11, Vol.18 (44), p.30473-30483
Main Authors: Igoa Saldaña, Fernando, Gaudisson, Thomas, Le Floch, Sylvie, Baptiste, Benoît, Delbes, Ludovic, Malarewicz, Virgile, Beyssac, Olivier, Béneut, Keevin, Coelho Diogo, Cristina, Gervais, Christel, Rousse, Gwenaëlle, Rasim, Karsten, Grin, Yuri, Maître, Alexandre, Le Godec, Yann, Portehault, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Boron carbide (B4+δC) possesses a large potential as a structural material owing to its lightness, refractory character, and outstanding mechanical properties. However, its large-scale industrialization is set back by its tendency to amorphize when subjected to an external stress. In the present work, we design a path toward nanostructured boron carbide with greatly enhanced hardness and resistance to amorphization. The reaction pathway consists of triggering an isomorphic transformation of covalent nanocrystals of Na1–x B5–x C1+x (x = 0.18) produced in molten salts. The resulting 10 nm B4.1C nanocrystals exhibit a 4-fold decrease of size compared to previous works. Solid-state 11B and 13C NMR coupled to density functional theory (DFT) reveal that the boron carbide nanocrystals are made of a complex mixture of atomic configurations, which are located at the covalent structural chains between B11C icosahedral building units. These nanocrystals are combined with a spark plasma-sintering-derived method operated at high pressure. This yields full densification while maintaining the particle size. The nanoscaled grains and high density of grain boundaries provide the resulting nanostructured bodies with significantly enhanced hardness and resistance to amorphization, thus delivering a superhard material.
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c08599