Loading…
Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization
Engineering new photoanode materials to substantially improve the efficiency of natural dye-sensitized solar cells (DSSC-Ns) is a significant challenge in the field of DSSC-Ns. This study utilizes the doctor blade technique to develop novel photoanode materials based on mixtures with different propo...
Saved in:
Published in: | Processes 2024-11, Vol.12 (11), p.2481 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-121c688baf50de3c8311dac6907590ceffcd86ab0dd13d43cdf40d05d126f02e3 |
container_end_page | |
container_issue | 11 |
container_start_page | 2481 |
container_title | Processes |
container_volume | 12 |
creator | Kraidy, Assohoun Fulgence Yapi, Abé Simon Saint-Gregoire, Pierre Vaillant-Roca, Lídice Eke, Samuel Mouangue, Ruben Jamali, Arash Gagou, Yaovi |
description | Engineering new photoanode materials to substantially improve the efficiency of natural dye-sensitized solar cells (DSSC-Ns) is a significant challenge in the field of DSSC-Ns. This study utilizes the doctor blade technique to develop novel photoanode materials based on mixtures with different proportions of TiO2 Hombikat UV100 and TiO2 P25, two nanometric powders with different grain sizes. The fabricated films were studied by X-ray diffraction, which revealed a dominant anatase phase in the structure, as was corroborated by Raman spectroscopy. The crystallite size of the materials was determined using the Scherrer method. Using optical measurements, we estimated the bandgap energy (Eg) of the photoanodes that varied in the samples at around 3 eV. The assembled solar cells demonstrated a significant efficiency of 4.87% in the TiO2 Hombikat UV100/TiO2 P25 sample with the proportion of 50–50% (HP50) of blended photoanode. This sample device exhibited a fill factor of 50.41%, an open circuit voltage (Voc) of 0.65 V, and a current density of 14.75 mA/cm2 for an active surface area of 0.19 cm2. The HP50 sample constituted highly efficient DSSC-Ns and photoanodes with lower open-circuit voltage in the series, while HP40 developed a Voc of 0.73 V, and HP30 developed a Voc of 0.70 V. |
doi_str_mv | 10.3390/pr12112481 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04777123v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133376872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-121c688baf50de3c8311dac6907590ceffcd86ab0dd13d43cdf40d05d126f02e3</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYsoOHQvfoKATwrV3KRt2scxpxOGG2zztWT5YzPbZKaZsOGHt2Oi3pd7Ofw43MOJoivAd5QW-H7jgQCQJIeTqEcIYXHBgJ3-u8-jftuucTcF0DzNetHXyFbcCtUoG5DT6IWHrec1etipeK5sa4LZK4nmruYeDVVdo5HWRhhlxQ4tKu-2bxVamClBY9eszDsPaPkKGCNu5VGfkRTNKhcct04qNN0E05g9D8bZy-hM87pV_Z99ES0fR4vhOJ5Mn56Hg0ksCOQh7lKJLM9XXKdYKipyCiC5yArM0gILpbWQecZXWEqgMqFC6gRLnEogmcZE0Yvo5uhb8brceNNwvysdN-V4MCkPGk4YY0DoJ3Ts9ZHdePexVW0o127rbfdeSYFSyrKckY66PVLCu7b1Sv_aAi4PZZR_ZdBvYSB6jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133376872</pqid></control><display><type>article</type><title>Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization</title><source>Publicly Available Content Database</source><creator>Kraidy, Assohoun Fulgence ; Yapi, Abé Simon ; Saint-Gregoire, Pierre ; Vaillant-Roca, Lídice ; Eke, Samuel ; Mouangue, Ruben ; Jamali, Arash ; Gagou, Yaovi</creator><creatorcontrib>Kraidy, Assohoun Fulgence ; Yapi, Abé Simon ; Saint-Gregoire, Pierre ; Vaillant-Roca, Lídice ; Eke, Samuel ; Mouangue, Ruben ; Jamali, Arash ; Gagou, Yaovi</creatorcontrib><description>Engineering new photoanode materials to substantially improve the efficiency of natural dye-sensitized solar cells (DSSC-Ns) is a significant challenge in the field of DSSC-Ns. This study utilizes the doctor blade technique to develop novel photoanode materials based on mixtures with different proportions of TiO2 Hombikat UV100 and TiO2 P25, two nanometric powders with different grain sizes. The fabricated films were studied by X-ray diffraction, which revealed a dominant anatase phase in the structure, as was corroborated by Raman spectroscopy. The crystallite size of the materials was determined using the Scherrer method. Using optical measurements, we estimated the bandgap energy (Eg) of the photoanodes that varied in the samples at around 3 eV. The assembled solar cells demonstrated a significant efficiency of 4.87% in the TiO2 Hombikat UV100/TiO2 P25 sample with the proportion of 50–50% (HP50) of blended photoanode. This sample device exhibited a fill factor of 50.41%, an open circuit voltage (Voc) of 0.65 V, and a current density of 14.75 mA/cm2 for an active surface area of 0.19 cm2. The HP50 sample constituted highly efficient DSSC-Ns and photoanodes with lower open-circuit voltage in the series, while HP40 developed a Voc of 0.73 V, and HP30 developed a Voc of 0.70 V.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12112481</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anatase ; Condensed Matter ; Crystallites ; Crystals ; Dye-sensitized solar cells ; Dyes ; Efficiency ; Electrolytes ; Glass substrates ; Grain size ; Open circuit voltage ; Optical measurement ; Photoanodes ; Photocatalysis ; Physics ; Polyethylene glycol ; Raman spectroscopy ; Scanning electron microscopy ; Titanium dioxide ; Voltage ; X-ray diffraction</subject><ispartof>Processes, 2024-11, Vol.12 (11), p.2481</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-121c688baf50de3c8311dac6907590ceffcd86ab0dd13d43cdf40d05d126f02e3</cites><orcidid>0009-0001-0421-4933 ; 0000-0001-6196-8849 ; 0000-0003-3013-9276 ; 0000-0003-0731-9519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133376872/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133376872?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,74998</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04777123$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kraidy, Assohoun Fulgence</creatorcontrib><creatorcontrib>Yapi, Abé Simon</creatorcontrib><creatorcontrib>Saint-Gregoire, Pierre</creatorcontrib><creatorcontrib>Vaillant-Roca, Lídice</creatorcontrib><creatorcontrib>Eke, Samuel</creatorcontrib><creatorcontrib>Mouangue, Ruben</creatorcontrib><creatorcontrib>Jamali, Arash</creatorcontrib><creatorcontrib>Gagou, Yaovi</creatorcontrib><title>Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization</title><title>Processes</title><description>Engineering new photoanode materials to substantially improve the efficiency of natural dye-sensitized solar cells (DSSC-Ns) is a significant challenge in the field of DSSC-Ns. This study utilizes the doctor blade technique to develop novel photoanode materials based on mixtures with different proportions of TiO2 Hombikat UV100 and TiO2 P25, two nanometric powders with different grain sizes. The fabricated films were studied by X-ray diffraction, which revealed a dominant anatase phase in the structure, as was corroborated by Raman spectroscopy. The crystallite size of the materials was determined using the Scherrer method. Using optical measurements, we estimated the bandgap energy (Eg) of the photoanodes that varied in the samples at around 3 eV. The assembled solar cells demonstrated a significant efficiency of 4.87% in the TiO2 Hombikat UV100/TiO2 P25 sample with the proportion of 50–50% (HP50) of blended photoanode. This sample device exhibited a fill factor of 50.41%, an open circuit voltage (Voc) of 0.65 V, and a current density of 14.75 mA/cm2 for an active surface area of 0.19 cm2. The HP50 sample constituted highly efficient DSSC-Ns and photoanodes with lower open-circuit voltage in the series, while HP40 developed a Voc of 0.73 V, and HP30 developed a Voc of 0.70 V.</description><subject>Anatase</subject><subject>Condensed Matter</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Electrolytes</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Open circuit voltage</subject><subject>Optical measurement</subject><subject>Photoanodes</subject><subject>Photocatalysis</subject><subject>Physics</subject><subject>Polyethylene glycol</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><subject>X-ray diffraction</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkV9LwzAUxYsoOHQvfoKATwrV3KRt2scxpxOGG2zztWT5YzPbZKaZsOGHt2Oi3pd7Ofw43MOJoivAd5QW-H7jgQCQJIeTqEcIYXHBgJ3-u8-jftuucTcF0DzNetHXyFbcCtUoG5DT6IWHrec1etipeK5sa4LZK4nmruYeDVVdo5HWRhhlxQ4tKu-2bxVamClBY9eszDsPaPkKGCNu5VGfkRTNKhcct04qNN0E05g9D8bZy-hM87pV_Z99ES0fR4vhOJ5Mn56Hg0ksCOQh7lKJLM9XXKdYKipyCiC5yArM0gILpbWQecZXWEqgMqFC6gRLnEogmcZE0Yvo5uhb8brceNNwvysdN-V4MCkPGk4YY0DoJ3Ts9ZHdePexVW0o127rbfdeSYFSyrKckY66PVLCu7b1Sv_aAi4PZZR_ZdBvYSB6jA</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Kraidy, Assohoun Fulgence</creator><creator>Yapi, Abé Simon</creator><creator>Saint-Gregoire, Pierre</creator><creator>Vaillant-Roca, Lídice</creator><creator>Eke, Samuel</creator><creator>Mouangue, Ruben</creator><creator>Jamali, Arash</creator><creator>Gagou, Yaovi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0001-0421-4933</orcidid><orcidid>https://orcid.org/0000-0001-6196-8849</orcidid><orcidid>https://orcid.org/0000-0003-3013-9276</orcidid><orcidid>https://orcid.org/0000-0003-0731-9519</orcidid></search><sort><creationdate>20241108</creationdate><title>Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization</title><author>Kraidy, Assohoun Fulgence ; Yapi, Abé Simon ; Saint-Gregoire, Pierre ; Vaillant-Roca, Lídice ; Eke, Samuel ; Mouangue, Ruben ; Jamali, Arash ; Gagou, Yaovi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-121c688baf50de3c8311dac6907590ceffcd86ab0dd13d43cdf40d05d126f02e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anatase</topic><topic>Condensed Matter</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Electrolytes</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Open circuit voltage</topic><topic>Optical measurement</topic><topic>Photoanodes</topic><topic>Photocatalysis</topic><topic>Physics</topic><topic>Polyethylene glycol</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraidy, Assohoun Fulgence</creatorcontrib><creatorcontrib>Yapi, Abé Simon</creatorcontrib><creatorcontrib>Saint-Gregoire, Pierre</creatorcontrib><creatorcontrib>Vaillant-Roca, Lídice</creatorcontrib><creatorcontrib>Eke, Samuel</creatorcontrib><creatorcontrib>Mouangue, Ruben</creatorcontrib><creatorcontrib>Jamali, Arash</creatorcontrib><creatorcontrib>Gagou, Yaovi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraidy, Assohoun Fulgence</au><au>Yapi, Abé Simon</au><au>Saint-Gregoire, Pierre</au><au>Vaillant-Roca, Lídice</au><au>Eke, Samuel</au><au>Mouangue, Ruben</au><au>Jamali, Arash</au><au>Gagou, Yaovi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization</atitle><jtitle>Processes</jtitle><date>2024-11-08</date><risdate>2024</risdate><volume>12</volume><issue>11</issue><spage>2481</spage><pages>2481-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Engineering new photoanode materials to substantially improve the efficiency of natural dye-sensitized solar cells (DSSC-Ns) is a significant challenge in the field of DSSC-Ns. This study utilizes the doctor blade technique to develop novel photoanode materials based on mixtures with different proportions of TiO2 Hombikat UV100 and TiO2 P25, two nanometric powders with different grain sizes. The fabricated films were studied by X-ray diffraction, which revealed a dominant anatase phase in the structure, as was corroborated by Raman spectroscopy. The crystallite size of the materials was determined using the Scherrer method. Using optical measurements, we estimated the bandgap energy (Eg) of the photoanodes that varied in the samples at around 3 eV. The assembled solar cells demonstrated a significant efficiency of 4.87% in the TiO2 Hombikat UV100/TiO2 P25 sample with the proportion of 50–50% (HP50) of blended photoanode. This sample device exhibited a fill factor of 50.41%, an open circuit voltage (Voc) of 0.65 V, and a current density of 14.75 mA/cm2 for an active surface area of 0.19 cm2. The HP50 sample constituted highly efficient DSSC-Ns and photoanodes with lower open-circuit voltage in the series, while HP40 developed a Voc of 0.73 V, and HP30 developed a Voc of 0.70 V.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12112481</doi><orcidid>https://orcid.org/0009-0001-0421-4933</orcidid><orcidid>https://orcid.org/0000-0001-6196-8849</orcidid><orcidid>https://orcid.org/0000-0003-3013-9276</orcidid><orcidid>https://orcid.org/0000-0003-0731-9519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-11, Vol.12 (11), p.2481 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04777123v1 |
source | Publicly Available Content Database |
subjects | Anatase Condensed Matter Crystallites Crystals Dye-sensitized solar cells Dyes Efficiency Electrolytes Glass substrates Grain size Open circuit voltage Optical measurement Photoanodes Photocatalysis Physics Polyethylene glycol Raman spectroscopy Scanning electron microscopy Titanium dioxide Voltage X-ray diffraction |
title | Enhancement of Natural Dye-Sensitized Solar Cell Efficiency Through TiO2 Hombikat UV100 and TiO2 P25 Photoanode Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Natural%20Dye-Sensitized%20Solar%20Cell%20Efficiency%20Through%20TiO2%20Hombikat%20UV100%20and%20TiO2%20P25%20Photoanode%20Optimization&rft.jtitle=Processes&rft.au=Kraidy,%20Assohoun%20Fulgence&rft.date=2024-11-08&rft.volume=12&rft.issue=11&rft.spage=2481&rft.pages=2481-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12112481&rft_dat=%3Cproquest_hal_p%3E3133376872%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-121c688baf50de3c8311dac6907590ceffcd86ab0dd13d43cdf40d05d126f02e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133376872&rft_id=info:pmid/&rfr_iscdi=true |