Loading…
Forecasting photovoltaic production with neural networks and weather features
In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy p...
Saved in:
Published in: | Energy economics 2024-11, Vol.139, p.107884, Article 107884 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13 |
container_end_page | |
container_issue | |
container_start_page | 107884 |
container_title | Energy economics |
container_volume | 139 |
creator | Goutte, Stéphane Klotzner, Klemens Le, Hoang-Viet von Mettenheim, Hans-Jörg |
description | In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts.
•Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting. |
doi_str_mv | 10.1016/j.eneco.2024.107884 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04779953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988324005929</els_id><sourcerecordid>S0140988324005929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhj2ARCk8AUtWhpRznMTOwFBVlCIVscBsOfaFuIS4st1WvD0JQYxMv_TrvtPdR8gNhQUFWt7tFtijdosMsnxouBD5GZkBzSGthGAX5DKEHQAUZSFm5HntPGoVou3fk33roju6Liqrk7135qCjdX1ysrFNejx41Q0RT85_hET1Jjmhii36pBny4DFckfNGdQGvf3NO3tYPr6tNun15fFott6nOyiymTJs6K1RRVsoYhOFCzEvRqIbVWYZYQ8NzAcgLzlSjBUVgtalBlCXXnGnK5uR22tuqTu69_VT-Szpl5Wa5lWMHOedVVbDjOMumWe1dCB6bP4CCHI3JnfwxJkdjcjI2UPcThcMbR4teBm2x12js4CtK4-y__DecdXjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting photovoltaic production with neural networks and weather features</title><source>ScienceDirect Journals</source><creator>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</creator><creatorcontrib>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</creatorcontrib><description>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts.
•Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</description><identifier>ISSN: 0140-9883</identifier><identifier>DOI: 10.1016/j.eneco.2024.107884</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Entity embedding ; Machine learning ; Neural networks ; Quantitative Finance ; Solar energy ; Time series forecasting</subject><ispartof>Energy economics, 2024-11, Vol.139, p.107884, Article 107884</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</cites><orcidid>0000-0003-3646-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04779953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goutte, Stéphane</creatorcontrib><creatorcontrib>Klotzner, Klemens</creatorcontrib><creatorcontrib>Le, Hoang-Viet</creatorcontrib><creatorcontrib>von Mettenheim, Hans-Jörg</creatorcontrib><title>Forecasting photovoltaic production with neural networks and weather features</title><title>Energy economics</title><description>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts.
•Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</description><subject>Entity embedding</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantitative Finance</subject><subject>Solar energy</subject><subject>Time series forecasting</subject><issn>0140-9883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhj2ARCk8AUtWhpRznMTOwFBVlCIVscBsOfaFuIS4st1WvD0JQYxMv_TrvtPdR8gNhQUFWt7tFtijdosMsnxouBD5GZkBzSGthGAX5DKEHQAUZSFm5HntPGoVou3fk33roju6Liqrk7135qCjdX1ysrFNejx41Q0RT85_hET1Jjmhii36pBny4DFckfNGdQGvf3NO3tYPr6tNun15fFott6nOyiymTJs6K1RRVsoYhOFCzEvRqIbVWYZYQ8NzAcgLzlSjBUVgtalBlCXXnGnK5uR22tuqTu69_VT-Szpl5Wa5lWMHOedVVbDjOMumWe1dCB6bP4CCHI3JnfwxJkdjcjI2UPcThcMbR4teBm2x12js4CtK4-y__DecdXjo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Goutte, Stéphane</creator><creator>Klotzner, Klemens</creator><creator>Le, Hoang-Viet</creator><creator>von Mettenheim, Hans-Jörg</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3646-5582</orcidid></search><sort><creationdate>20241101</creationdate><title>Forecasting photovoltaic production with neural networks and weather features</title><author>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Entity embedding</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantitative Finance</topic><topic>Solar energy</topic><topic>Time series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goutte, Stéphane</creatorcontrib><creatorcontrib>Klotzner, Klemens</creatorcontrib><creatorcontrib>Le, Hoang-Viet</creatorcontrib><creatorcontrib>von Mettenheim, Hans-Jörg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goutte, Stéphane</au><au>Klotzner, Klemens</au><au>Le, Hoang-Viet</au><au>von Mettenheim, Hans-Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting photovoltaic production with neural networks and weather features</atitle><jtitle>Energy economics</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>139</volume><spage>107884</spage><pages>107884-</pages><artnum>107884</artnum><issn>0140-9883</issn><abstract>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts.
•Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2024.107884</doi><orcidid>https://orcid.org/0000-0003-3646-5582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-9883 |
ispartof | Energy economics, 2024-11, Vol.139, p.107884, Article 107884 |
issn | 0140-9883 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04779953v1 |
source | ScienceDirect Journals |
subjects | Entity embedding Machine learning Neural networks Quantitative Finance Solar energy Time series forecasting |
title | Forecasting photovoltaic production with neural networks and weather features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20photovoltaic%20production%20with%20neural%20networks%20and%20weather%20features&rft.jtitle=Energy%20economics&rft.au=Goutte,%20St%C3%A9phane&rft.date=2024-11-01&rft.volume=139&rft.spage=107884&rft.pages=107884-&rft.artnum=107884&rft.issn=0140-9883&rft_id=info:doi/10.1016/j.eneco.2024.107884&rft_dat=%3Celsevier_hal_p%3ES0140988324005929%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |