Loading…

Forecasting photovoltaic production with neural networks and weather features

In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy p...

Full description

Saved in:
Bibliographic Details
Published in:Energy economics 2024-11, Vol.139, p.107884, Article 107884
Main Authors: Goutte, Stéphane, Klotzner, Klemens, Le, Hoang-Viet, von Mettenheim, Hans-Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13
container_end_page
container_issue
container_start_page 107884
container_title Energy economics
container_volume 139
creator Goutte, Stéphane
Klotzner, Klemens
Le, Hoang-Viet
von Mettenheim, Hans-Jörg
description In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts. •Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.
doi_str_mv 10.1016/j.eneco.2024.107884
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04779953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988324005929</els_id><sourcerecordid>S0140988324005929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhj2ARCk8AUtWhpRznMTOwFBVlCIVscBsOfaFuIS4st1WvD0JQYxMv_TrvtPdR8gNhQUFWt7tFtijdosMsnxouBD5GZkBzSGthGAX5DKEHQAUZSFm5HntPGoVou3fk33roju6Liqrk7135qCjdX1ysrFNejx41Q0RT85_hET1Jjmhii36pBny4DFckfNGdQGvf3NO3tYPr6tNun15fFott6nOyiymTJs6K1RRVsoYhOFCzEvRqIbVWYZYQ8NzAcgLzlSjBUVgtalBlCXXnGnK5uR22tuqTu69_VT-Szpl5Wa5lWMHOedVVbDjOMumWe1dCB6bP4CCHI3JnfwxJkdjcjI2UPcThcMbR4teBm2x12js4CtK4-y__DecdXjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting photovoltaic production with neural networks and weather features</title><source>ScienceDirect Journals</source><creator>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</creator><creatorcontrib>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</creatorcontrib><description>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts. •Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</description><identifier>ISSN: 0140-9883</identifier><identifier>DOI: 10.1016/j.eneco.2024.107884</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Entity embedding ; Machine learning ; Neural networks ; Quantitative Finance ; Solar energy ; Time series forecasting</subject><ispartof>Energy economics, 2024-11, Vol.139, p.107884, Article 107884</ispartof><rights>2024 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</cites><orcidid>0000-0003-3646-5582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04779953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goutte, Stéphane</creatorcontrib><creatorcontrib>Klotzner, Klemens</creatorcontrib><creatorcontrib>Le, Hoang-Viet</creatorcontrib><creatorcontrib>von Mettenheim, Hans-Jörg</creatorcontrib><title>Forecasting photovoltaic production with neural networks and weather features</title><title>Energy economics</title><description>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts. •Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</description><subject>Entity embedding</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantitative Finance</subject><subject>Solar energy</subject><subject>Time series forecasting</subject><issn>0140-9883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhj2ARCk8AUtWhpRznMTOwFBVlCIVscBsOfaFuIS4st1WvD0JQYxMv_TrvtPdR8gNhQUFWt7tFtijdosMsnxouBD5GZkBzSGthGAX5DKEHQAUZSFm5HntPGoVou3fk33roju6Liqrk7135qCjdX1ysrFNejx41Q0RT85_hET1Jjmhii36pBny4DFckfNGdQGvf3NO3tYPr6tNun15fFott6nOyiymTJs6K1RRVsoYhOFCzEvRqIbVWYZYQ8NzAcgLzlSjBUVgtalBlCXXnGnK5uR22tuqTu69_VT-Szpl5Wa5lWMHOedVVbDjOMumWe1dCB6bP4CCHI3JnfwxJkdjcjI2UPcThcMbR4teBm2x12js4CtK4-y__DecdXjo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Goutte, Stéphane</creator><creator>Klotzner, Klemens</creator><creator>Le, Hoang-Viet</creator><creator>von Mettenheim, Hans-Jörg</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3646-5582</orcidid></search><sort><creationdate>20241101</creationdate><title>Forecasting photovoltaic production with neural networks and weather features</title><author>Goutte, Stéphane ; Klotzner, Klemens ; Le, Hoang-Viet ; von Mettenheim, Hans-Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Entity embedding</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantitative Finance</topic><topic>Solar energy</topic><topic>Time series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goutte, Stéphane</creatorcontrib><creatorcontrib>Klotzner, Klemens</creatorcontrib><creatorcontrib>Le, Hoang-Viet</creatorcontrib><creatorcontrib>von Mettenheim, Hans-Jörg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goutte, Stéphane</au><au>Klotzner, Klemens</au><au>Le, Hoang-Viet</au><au>von Mettenheim, Hans-Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting photovoltaic production with neural networks and weather features</atitle><jtitle>Energy economics</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>139</volume><spage>107884</spage><pages>107884-</pages><artnum>107884</artnum><issn>0140-9883</issn><abstract>In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts. •Machine Learning is effective in forecasting photovoltaic production up to 2 days ahead.•Neural networks tend to outperform standard methods.•Entity embedding enhances solar forecast accuracy.•Entity embedding reveals insights into the impact of weather categorical descriptors.•Weather data integration key for forecasting.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2024.107884</doi><orcidid>https://orcid.org/0000-0003-3646-5582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2024-11, Vol.139, p.107884, Article 107884
issn 0140-9883
language eng
recordid cdi_hal_primary_oai_HAL_hal_04779953v1
source ScienceDirect Journals
subjects Entity embedding
Machine learning
Neural networks
Quantitative Finance
Solar energy
Time series forecasting
title Forecasting photovoltaic production with neural networks and weather features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20photovoltaic%20production%20with%20neural%20networks%20and%20weather%20features&rft.jtitle=Energy%20economics&rft.au=Goutte,%20St%C3%A9phane&rft.date=2024-11-01&rft.volume=139&rft.spage=107884&rft.pages=107884-&rft.artnum=107884&rft.issn=0140-9883&rft_id=info:doi/10.1016/j.eneco.2024.107884&rft_dat=%3Celsevier_hal_p%3ES0140988324005929%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-3cdb25a569adde0884e468faf3b22eeb0f7480e7573afc81e03bdb08667c73c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true