Loading…
Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths
Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of color patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologica...
Saved in:
Published in: | Journal of evolutionary biology 2024-11 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c248t-7f71a7d1a2e4848f8a642284f706bd5d41b33b6e3cc8aa751687944ddcd45473 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of evolutionary biology |
container_volume | |
creator | Arias, Mónica Behrendt, Lis Dreßler, Lyn Raka, Adelina Perrier, Charles Elias, Marianne Gomez, Doris Renoult, Julien P Tedore, Cynthia |
description | Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of color patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural networks. To test this, we compare image classification performance by humans and six DNNs (AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN architectures found moths with larger transparent elements harder to detect. However, humans and only one DNN architecture (GoogLeNet) found moths with transparent elements touching one side of the moth's outline harder to detect than moths with untouched outlines. When moths were small, the camouflaging effect of transparent elements touching the moth's outline was reduced for DNNs but enhanced for humans. Prey size can thus interact with camouflage type in opposing directions in humans and DNNs, which warrants a deeper investigation of size interactions with a broader range of stimuli. Overall, our results suggest that humans and DNNs responses had some similarities, but not enough to justify the widespread use of DNNs for studies of camouflage. |
doi_str_mv | 10.1093/jeb/voae146 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04785814v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133416408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-7f71a7d1a2e4848f8a642284f706bd5d41b33b6e3cc8aa751687944ddcd45473</originalsourceid><addsrcrecordid>eNpNkT1PwzAQhi0E4ntiRxYTCBXs-JI4I0JAkSqxdLcc-9IGkjjYTlH_PSktiOlOp-ee4X0JueDsjrNC3L9jeb9yGjlke-SYQ8ImBWd8_99-RE5CeGeMZ5Cmh-RIFKksJINjsphjiHW3oHGJFD-HeqUb7Myauoouh1Z39Kr3aHV0PlxR3VlqEXva4eB1M4745fxHoHX3I7AY0cTadZt349d9rA1tXVyGM3JQ6Sbg-W6ekvnz0_xxOpm9vbw-PswmJgEZJ3mVc51brhMECbKSOoMkkVDlLCttaoGXQpQZCmOk1nnKM5kXANYaCynk4pTcbLVL3aje1632a-V0raYPM7W5MchlKjms-Mheb9neu89hjEG1dTDYNLpDNwQluBAwJsbkiN5uUeNdCB6rPzdnalOCGktQuxJG-nInHsoW7R_7m7r4BkCYg28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133416408</pqid></control><display><type>article</type><title>Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Oxford Journals Online</source><creator>Arias, Mónica ; Behrendt, Lis ; Dreßler, Lyn ; Raka, Adelina ; Perrier, Charles ; Elias, Marianne ; Gomez, Doris ; Renoult, Julien P ; Tedore, Cynthia</creator><contributor>Rogers, Rebekah ; Montgomery, Stephen</contributor><creatorcontrib>Arias, Mónica ; Behrendt, Lis ; Dreßler, Lyn ; Raka, Adelina ; Perrier, Charles ; Elias, Marianne ; Gomez, Doris ; Renoult, Julien P ; Tedore, Cynthia ; Rogers, Rebekah ; Montgomery, Stephen</creatorcontrib><description>Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of color patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural networks. To test this, we compare image classification performance by humans and six DNNs (AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN architectures found moths with larger transparent elements harder to detect. However, humans and only one DNN architecture (GoogLeNet) found moths with transparent elements touching one side of the moth's outline harder to detect than moths with untouched outlines. When moths were small, the camouflaging effect of transparent elements touching the moth's outline was reduced for DNNs but enhanced for humans. Prey size can thus interact with camouflage type in opposing directions in humans and DNNs, which warrants a deeper investigation of size interactions with a broader range of stimuli. Overall, our results suggest that humans and DNNs responses had some similarities, but not enough to justify the widespread use of DNNs for studies of camouflage.</description><identifier>ISSN: 1420-9101</identifier><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1093/jeb/voae146</identifier><identifier>PMID: 39589804</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Animal biology ; Biodiversity ; Computer Science ; Ecology, environment ; Invertebrate Zoology ; Life Sciences ; Neural and Evolutionary Computing ; Populations and Evolution ; Technology for Human Learning</subject><ispartof>Journal of evolutionary biology, 2024-11</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-7f71a7d1a2e4848f8a642284f706bd5d41b33b6e3cc8aa751687944ddcd45473</cites><orcidid>0000-0002-9144-3426 ; 0000-0003-1331-2604 ; 0000-0002-3731-9037 ; 0000-0001-5820-9374 ; 0000-0002-1250-2353 ; 0000-0001-6690-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39589804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04785814$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Rogers, Rebekah</contributor><contributor>Montgomery, Stephen</contributor><creatorcontrib>Arias, Mónica</creatorcontrib><creatorcontrib>Behrendt, Lis</creatorcontrib><creatorcontrib>Dreßler, Lyn</creatorcontrib><creatorcontrib>Raka, Adelina</creatorcontrib><creatorcontrib>Perrier, Charles</creatorcontrib><creatorcontrib>Elias, Marianne</creatorcontrib><creatorcontrib>Gomez, Doris</creatorcontrib><creatorcontrib>Renoult, Julien P</creatorcontrib><creatorcontrib>Tedore, Cynthia</creatorcontrib><title>Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of color patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural networks. To test this, we compare image classification performance by humans and six DNNs (AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN architectures found moths with larger transparent elements harder to detect. However, humans and only one DNN architecture (GoogLeNet) found moths with transparent elements touching one side of the moth's outline harder to detect than moths with untouched outlines. When moths were small, the camouflaging effect of transparent elements touching the moth's outline was reduced for DNNs but enhanced for humans. Prey size can thus interact with camouflage type in opposing directions in humans and DNNs, which warrants a deeper investigation of size interactions with a broader range of stimuli. Overall, our results suggest that humans and DNNs responses had some similarities, but not enough to justify the widespread use of DNNs for studies of camouflage.</description><subject>Animal biology</subject><subject>Biodiversity</subject><subject>Computer Science</subject><subject>Ecology, environment</subject><subject>Invertebrate Zoology</subject><subject>Life Sciences</subject><subject>Neural and Evolutionary Computing</subject><subject>Populations and Evolution</subject><subject>Technology for Human Learning</subject><issn>1420-9101</issn><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkT1PwzAQhi0E4ntiRxYTCBXs-JI4I0JAkSqxdLcc-9IGkjjYTlH_PSktiOlOp-ee4X0JueDsjrNC3L9jeb9yGjlke-SYQ8ImBWd8_99-RE5CeGeMZ5Cmh-RIFKksJINjsphjiHW3oHGJFD-HeqUb7Myauoouh1Z39Kr3aHV0PlxR3VlqEXva4eB1M4745fxHoHX3I7AY0cTadZt349d9rA1tXVyGM3JQ6Sbg-W6ekvnz0_xxOpm9vbw-PswmJgEZJ3mVc51brhMECbKSOoMkkVDlLCttaoGXQpQZCmOk1nnKM5kXANYaCynk4pTcbLVL3aje1632a-V0raYPM7W5MchlKjms-Mheb9neu89hjEG1dTDYNLpDNwQluBAwJsbkiN5uUeNdCB6rPzdnalOCGktQuxJG-nInHsoW7R_7m7r4BkCYg28</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Arias, Mónica</creator><creator>Behrendt, Lis</creator><creator>Dreßler, Lyn</creator><creator>Raka, Adelina</creator><creator>Perrier, Charles</creator><creator>Elias, Marianne</creator><creator>Gomez, Doris</creator><creator>Renoult, Julien P</creator><creator>Tedore, Cynthia</creator><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9144-3426</orcidid><orcidid>https://orcid.org/0000-0003-1331-2604</orcidid><orcidid>https://orcid.org/0000-0002-3731-9037</orcidid><orcidid>https://orcid.org/0000-0001-5820-9374</orcidid><orcidid>https://orcid.org/0000-0002-1250-2353</orcidid><orcidid>https://orcid.org/0000-0001-6690-0085</orcidid></search><sort><creationdate>20241126</creationdate><title>Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths</title><author>Arias, Mónica ; Behrendt, Lis ; Dreßler, Lyn ; Raka, Adelina ; Perrier, Charles ; Elias, Marianne ; Gomez, Doris ; Renoult, Julien P ; Tedore, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-7f71a7d1a2e4848f8a642284f706bd5d41b33b6e3cc8aa751687944ddcd45473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal biology</topic><topic>Biodiversity</topic><topic>Computer Science</topic><topic>Ecology, environment</topic><topic>Invertebrate Zoology</topic><topic>Life Sciences</topic><topic>Neural and Evolutionary Computing</topic><topic>Populations and Evolution</topic><topic>Technology for Human Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Mónica</creatorcontrib><creatorcontrib>Behrendt, Lis</creatorcontrib><creatorcontrib>Dreßler, Lyn</creatorcontrib><creatorcontrib>Raka, Adelina</creatorcontrib><creatorcontrib>Perrier, Charles</creatorcontrib><creatorcontrib>Elias, Marianne</creatorcontrib><creatorcontrib>Gomez, Doris</creatorcontrib><creatorcontrib>Renoult, Julien P</creatorcontrib><creatorcontrib>Tedore, Cynthia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Mónica</au><au>Behrendt, Lis</au><au>Dreßler, Lyn</au><au>Raka, Adelina</au><au>Perrier, Charles</au><au>Elias, Marianne</au><au>Gomez, Doris</au><au>Renoult, Julien P</au><au>Tedore, Cynthia</au><au>Rogers, Rebekah</au><au>Montgomery, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2024-11-26</date><risdate>2024</risdate><issn>1420-9101</issn><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Researchers have shown growing interest in using deep neural networks (DNNs) to efficiently test the effects of perceptual processes on the evolution of color patterns and morphologies. Whether this is a valid approach remains unclear, as it is unknown whether the relative detectability of ecologically relevant stimuli to DNNs actually matches that of biological neural networks. To test this, we compare image classification performance by humans and six DNNs (AlexNet, VGG-16, VGG-19, ResNet-18, SqueezeNet, and GoogLeNet) trained to detect artificial moths on tree trunks. Moths varied in their degree of crypsis, conferred by different sizes and spatial configurations of transparent wing elements. Like humans, four of six DNN architectures found moths with larger transparent elements harder to detect. However, humans and only one DNN architecture (GoogLeNet) found moths with transparent elements touching one side of the moth's outline harder to detect than moths with untouched outlines. When moths were small, the camouflaging effect of transparent elements touching the moth's outline was reduced for DNNs but enhanced for humans. Prey size can thus interact with camouflage type in opposing directions in humans and DNNs, which warrants a deeper investigation of size interactions with a broader range of stimuli. Overall, our results suggest that humans and DNNs responses had some similarities, but not enough to justify the widespread use of DNNs for studies of camouflage.</abstract><cop>England</cop><pub>Wiley</pub><pmid>39589804</pmid><doi>10.1093/jeb/voae146</doi><orcidid>https://orcid.org/0000-0002-9144-3426</orcidid><orcidid>https://orcid.org/0000-0003-1331-2604</orcidid><orcidid>https://orcid.org/0000-0002-3731-9037</orcidid><orcidid>https://orcid.org/0000-0001-5820-9374</orcidid><orcidid>https://orcid.org/0000-0002-1250-2353</orcidid><orcidid>https://orcid.org/0000-0001-6690-0085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-9101 |
ispartof | Journal of evolutionary biology, 2024-11 |
issn | 1420-9101 1010-061X 1420-9101 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04785814v1 |
source | Wiley Online Library - AutoHoldings Journals; Oxford Journals Online |
subjects | Animal biology Biodiversity Computer Science Ecology, environment Invertebrate Zoology Life Sciences Neural and Evolutionary Computing Populations and Evolution Technology for Human Learning |
title | Testing the equivalency of human "predators" and deep neural networks in the detection of cryptic moths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20equivalency%20of%20human%20%22predators%22%20and%20deep%20neural%20networks%20in%20the%20detection%20of%20cryptic%20moths&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Arias,%20M%C3%B3nica&rft.date=2024-11-26&rft.issn=1420-9101&rft.eissn=1420-9101&rft_id=info:doi/10.1093/jeb/voae146&rft_dat=%3Cproquest_hal_p%3E3133416408%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c248t-7f71a7d1a2e4848f8a642284f706bd5d41b33b6e3cc8aa751687944ddcd45473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133416408&rft_id=info:pmid/39589804&rfr_iscdi=true |