Loading…

Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours

Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward mode...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences 2024-08, Vol.28 (4), p.681-696
Main Authors: El Mohtar, Samah, Le Maître, Olivier, Knio, Omar, Hoteit, Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43
container_end_page 696
container_issue 4
container_start_page 681
container_title Computational geosciences
container_volume 28
creator El Mohtar, Samah
Le Maître, Olivier
Knio, Omar
Hoteit, Ibrahim
description Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.
doi_str_mv 10.1007/s10596-024-10288-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04790229v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090080264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCGQCIEf4GSJEwdDt-0Zj48hIiTSSlzgbHln2ouj3fFieyPlH_hoehkeNy52u1xVXVJ13WuEdwhg31eE3g0SlJEIahyle9JdYG-1ROPcU56NAskc-7x7Ues9ADir8aL7cdeohJYeSMyhBTkXHhcx5aW2cppayovIUdRTKXkXGlURcxFhERRjmhItTXwIj1QTQ2nmZ2I4_JHltBf1mPZ85lOZSBxDCQfilexT8kGkQ9jReVvj__qyexbDvtKr3_dl9_Xm45frW7n5_Onu-mojJw2mSQIzbG2PqAwqFY2OaIHcAAhzb9zWRhXtrLHHrcYxEM3zSFYPM6IbiPmX3dvV91vY-2PhEOXR55D87dXGnzEw1oFS7gGZ-2blHkv-fqLa_D1HXTie1-AARlDD2VGtrKnkWgvFv7YI_tyQXxvy3JD_1ZB3LNKrqDJ52VH5Z_0f1U9DNpVu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090080264</pqid></control><display><type>article</type><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><source>Springer Nature</source><creator>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</creator><creatorcontrib>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</creatorcontrib><description>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-024-10288-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Approximation ; Bayesian analysis ; Bayesian theory ; Chemical spills ; Conditional probability ; Construction ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Environmental cleanup ; Environmental Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Identification ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Oil spills ; Original Paper ; Parameter estimation ; Parameter identification ; Parameter uncertainty ; Parameters ; Performance assessment ; Polynomials ; Probability theory ; Soil Science &amp; Conservation</subject><ispartof>Computational geosciences, 2024-08, Vol.28 (4), p.681-696</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</cites><orcidid>0000-0002-3811-7787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04790229$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Chemical spills</subject><subject>Conditional probability</subject><subject>Construction</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Environmental cleanup</subject><subject>Environmental Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Identification</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Oil spills</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Performance assessment</subject><subject>Polynomials</subject><subject>Probability theory</subject><subject>Soil Science &amp; Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQHCGQCIEf4GSJEwdDt-0Zj48hIiTSSlzgbHln2ouj3fFieyPlH_hoehkeNy52u1xVXVJ13WuEdwhg31eE3g0SlJEIahyle9JdYG-1ROPcU56NAskc-7x7Ues9ADir8aL7cdeohJYeSMyhBTkXHhcx5aW2cppayovIUdRTKXkXGlURcxFhERRjmhItTXwIj1QTQ2nmZ2I4_JHltBf1mPZ85lOZSBxDCQfilexT8kGkQ9jReVvj__qyexbDvtKr3_dl9_Xm45frW7n5_Onu-mojJw2mSQIzbG2PqAwqFY2OaIHcAAhzb9zWRhXtrLHHrcYxEM3zSFYPM6IbiPmX3dvV91vY-2PhEOXR55D87dXGnzEw1oFS7gGZ-2blHkv-fqLa_D1HXTie1-AARlDD2VGtrKnkWgvFv7YI_tyQXxvy3JD_1ZB3LNKrqDJ52VH5Z_0f1U9DNpVu</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>El Mohtar, Samah</creator><creator>Le Maître, Olivier</creator><creator>Knio, Omar</creator><creator>Hoteit, Ibrahim</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid></search><sort><creationdate>20240801</creationdate><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><author>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Chemical spills</topic><topic>Conditional probability</topic><topic>Construction</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Environmental cleanup</topic><topic>Environmental Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Identification</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Oil spills</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Performance assessment</topic><topic>Polynomials</topic><topic>Probability theory</topic><topic>Soil Science &amp; Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Mohtar, Samah</au><au>Le Maître, Olivier</au><au>Knio, Omar</au><au>Hoteit, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>681</spage><epage>696</epage><pages>681-696</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-024-10288-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2024-08, Vol.28 (4), p.681-696
issn 1420-0597
1573-1499
language eng
recordid cdi_hal_primary_oai_HAL_hal_04790229v1
source Springer Nature
subjects Algorithms
Approximation
Bayesian analysis
Bayesian theory
Chemical spills
Conditional probability
Construction
Earth and Environmental Science
Earth Sciences
Earthquakes
Environmental cleanup
Environmental Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Identification
Mathematical Modeling and Industrial Mathematics
Mathematics
Oil spills
Original Paper
Parameter estimation
Parameter identification
Parameter uncertainty
Parameters
Performance assessment
Polynomials
Probability theory
Soil Science & Conservation
title Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20data-driven%20construction%20of%20surrogates%20for%20an%20efficient%20Bayesian%20identification%20of%20oil%20spill%20source%20parameters%20from%20image%20contours&rft.jtitle=Computational%20geosciences&rft.au=El%20Mohtar,%20Samah&rft.date=2024-08-01&rft.volume=28&rft.issue=4&rft.spage=681&rft.epage=696&rft.pages=681-696&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-024-10288-9&rft_dat=%3Cproquest_hal_p%3E3090080264%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090080264&rft_id=info:pmid/&rfr_iscdi=true