Loading…
Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours
Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward mode...
Saved in:
Published in: | Computational geosciences 2024-08, Vol.28 (4), p.681-696 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43 |
container_end_page | 696 |
container_issue | 4 |
container_start_page | 681 |
container_title | Computational geosciences |
container_volume | 28 |
creator | El Mohtar, Samah Le Maître, Olivier Knio, Omar Hoteit, Ibrahim |
description | Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds. |
doi_str_mv | 10.1007/s10596-024-10288-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04790229v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090080264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</originalsourceid><addsrcrecordid>eNp9UctuFDEQHCGQCIEf4GSJEwdDt-0Zj48hIiTSSlzgbHln2ouj3fFieyPlH_hoehkeNy52u1xVXVJ13WuEdwhg31eE3g0SlJEIahyle9JdYG-1ROPcU56NAskc-7x7Ues9ADir8aL7cdeohJYeSMyhBTkXHhcx5aW2cppayovIUdRTKXkXGlURcxFhERRjmhItTXwIj1QTQ2nmZ2I4_JHltBf1mPZ85lOZSBxDCQfilexT8kGkQ9jReVvj__qyexbDvtKr3_dl9_Xm45frW7n5_Onu-mojJw2mSQIzbG2PqAwqFY2OaIHcAAhzb9zWRhXtrLHHrcYxEM3zSFYPM6IbiPmX3dvV91vY-2PhEOXR55D87dXGnzEw1oFS7gGZ-2blHkv-fqLa_D1HXTie1-AARlDD2VGtrKnkWgvFv7YI_tyQXxvy3JD_1ZB3LNKrqDJ52VH5Z_0f1U9DNpVu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090080264</pqid></control><display><type>article</type><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><source>Springer Nature</source><creator>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</creator><creatorcontrib>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</creatorcontrib><description>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-024-10288-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Approximation ; Bayesian analysis ; Bayesian theory ; Chemical spills ; Conditional probability ; Construction ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Environmental cleanup ; Environmental Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Identification ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Oil spills ; Original Paper ; Parameter estimation ; Parameter identification ; Parameter uncertainty ; Parameters ; Performance assessment ; Polynomials ; Probability theory ; Soil Science & Conservation</subject><ispartof>Computational geosciences, 2024-08, Vol.28 (4), p.681-696</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</cites><orcidid>0000-0002-3811-7787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04790229$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Chemical spills</subject><subject>Conditional probability</subject><subject>Construction</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Environmental cleanup</subject><subject>Environmental Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Identification</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Oil spills</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Performance assessment</subject><subject>Polynomials</subject><subject>Probability theory</subject><subject>Soil Science & Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQHCGQCIEf4GSJEwdDt-0Zj48hIiTSSlzgbHln2ouj3fFieyPlH_hoehkeNy52u1xVXVJ13WuEdwhg31eE3g0SlJEIahyle9JdYG-1ROPcU56NAskc-7x7Ues9ADir8aL7cdeohJYeSMyhBTkXHhcx5aW2cppayovIUdRTKXkXGlURcxFhERRjmhItTXwIj1QTQ2nmZ2I4_JHltBf1mPZ85lOZSBxDCQfilexT8kGkQ9jReVvj__qyexbDvtKr3_dl9_Xm45frW7n5_Onu-mojJw2mSQIzbG2PqAwqFY2OaIHcAAhzb9zWRhXtrLHHrcYxEM3zSFYPM6IbiPmX3dvV91vY-2PhEOXR55D87dXGnzEw1oFS7gGZ-2blHkv-fqLa_D1HXTie1-AARlDD2VGtrKnkWgvFv7YI_tyQXxvy3JD_1ZB3LNKrqDJ52VH5Z_0f1U9DNpVu</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>El Mohtar, Samah</creator><creator>Le Maître, Olivier</creator><creator>Knio, Omar</creator><creator>Hoteit, Ibrahim</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid></search><sort><creationdate>20240801</creationdate><title>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</title><author>El Mohtar, Samah ; Le Maître, Olivier ; Knio, Omar ; Hoteit, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Chemical spills</topic><topic>Conditional probability</topic><topic>Construction</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Environmental cleanup</topic><topic>Environmental Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Identification</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Oil spills</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Performance assessment</topic><topic>Polynomials</topic><topic>Probability theory</topic><topic>Soil Science & Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Le Maître, Olivier</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Mohtar, Samah</au><au>Le Maître, Olivier</au><au>Knio, Omar</au><au>Hoteit, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>681</spage><epage>696</epage><pages>681-696</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Identifying the source of an oil spill is an essential step in environmental forensics. The Bayesian approach allows to estimate the source parameters of an oil spill from available observations. Sampling the posterior distribution, however, can be computationally prohibitive unless the forward model is replaced by an inexpensive surrogate. Yet the construction of globally accurate surrogates can be challenging when the forward model exhibits strong nonlinear variations. We present an iterative data-driven algorithm for the construction of polynomial chaos surrogates whose accuracy is localized in regions of high posterior probability. Two synthetic oil spill experiments, in which the construction of prior-based surrogates is not feasible, are conducted to assess the performance of the proposed algorithm in estimating five source parameters. The algorithm successfully provided a good approximation of the posterior distribution and accelerated the estimation of the oil spill source parameters and their uncertainties by an order of 100 folds.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-024-10288-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3811-7787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2024-08, Vol.28 (4), p.681-696 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04790229v1 |
source | Springer Nature |
subjects | Algorithms Approximation Bayesian analysis Bayesian theory Chemical spills Conditional probability Construction Earth and Environmental Science Earth Sciences Earthquakes Environmental cleanup Environmental Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Identification Mathematical Modeling and Industrial Mathematics Mathematics Oil spills Original Paper Parameter estimation Parameter identification Parameter uncertainty Parameters Performance assessment Polynomials Probability theory Soil Science & Conservation |
title | Iterative data-driven construction of surrogates for an efficient Bayesian identification of oil spill source parameters from image contours |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20data-driven%20construction%20of%20surrogates%20for%20an%20efficient%20Bayesian%20identification%20of%20oil%20spill%20source%20parameters%20from%20image%20contours&rft.jtitle=Computational%20geosciences&rft.au=El%20Mohtar,%20Samah&rft.date=2024-08-01&rft.volume=28&rft.issue=4&rft.spage=681&rft.epage=696&rft.pages=681-696&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-024-10288-9&rft_dat=%3Cproquest_hal_p%3E3090080264%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-e046b751124122f43f170e96010d549b7f2f7d3151b318aeedd8e736d1196ef43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090080264&rft_id=info:pmid/&rfr_iscdi=true |