Loading…
Error analysis of a reduced order method for the Allen-Cahn equation
In this paper we carry out an error analysis for a reduced order method for the Allen-Cahn equation. First, an ensemble of snapshots is formed from the numerical solutions at some time instances of the full order model, which is a time-space discretisation of the Allen-Cahn equation. The reduced ord...
Saved in:
Published in: | Applied numerical mathematics 2024-09, Vol.203, p.186-201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we carry out an error analysis for a reduced order method for the Allen-Cahn equation. First, an ensemble of snapshots is formed from the numerical solutions at some time instances of the full order model, which is a time-space discretisation of the Allen-Cahn equation. The reduced order model is essentially a new spatial discretisation method by using low dimensional approximations to the original approximation space. The low dimensional approximation space is generated from the ensemble of snapshots by applying a proper orthogonal decomposition method. To determine the error between the exact solution and the solution of the reduced order model. We consider a time-space discretisation for which an error estimate of the full model solution is available. Specifically, the full discretisation is based on a stabilized auxiliary variable approach for the time stepping and a spectral Galerkin method for the spatial discretisation. The advantages of this full discretisation are its unconditional stability, the availability of error estimates and its ease of implementation. An estimate of the errors in the H1 seminorm is rigorously derived for both the full order model and the reduced order model, which is then verified by some numerical examples. |
---|---|
ISSN: | 0168-9274 1873-5460 |
DOI: | 10.1016/j.apnum.2024.03.021 |