Loading…

Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (2), p.834-839
Main Authors: Riemensperger, Thomas, Isabel, Guillaume, Coulom, Hélène, Neuser, Kirsa, Seugnet, Laurent, Kume, Kazuhiko, Iché-Torres, Magali, Cassar, Marlène, Strauss, Roland, Preat, Thomas, Hirsh, Jay, Birman, Serge, Nash, Howard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483
cites cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483
container_end_page 839
container_issue 2
container_start_page 834
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Riemensperger, Thomas
Isabel, Guillaume
Coulom, Hélène
Neuser, Kirsa
Seugnet, Laurent
Kume, Kazuhiko
Iché-Torres, Magali
Cassar, Marlène
Strauss, Roland
Preat, Thomas
Hirsh, Jay
Birman, Serge
Nash, Howard
description The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.
doi_str_mv 10.1073/pnas.1010930108
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04795071v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25770867</jstor_id><sourcerecordid>25770867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhi0EYsvCmRMo4oI4hJ1xnNi-IC3LxyJV4gLiaLmOQ1wldrDTSv33OGrZwl642CPP847Hr4eQ5whvEXh1NXmdcoQgq7yIB2SVQywbJuEhWQFQXgpG2QV5ktIWAGQt4DG5oIiCVwJX5Md72-u9C1EPhQk-2V87641NReiKNkx6dN4Wre2ccfn8UDhfzL0tPsSQwtS7QRfG-nlRexv3YZeKdEizHZ-SR50ekn122i_J908fv93cluuvn7_cXK9LU1M5l5aaxgLfcI1trRs0QDsBtUQOutXY6JpRs8HGsLajxjSipq3V7aaVpmuAieqSvDvWnXab0banZtQU3ajjQQXt1L8Z73r1M-xVBTQ7yHOBN8cC_T3Z7fVaLWfAuKyB4x4z-_p0WQzZpzSr0SVjh0F7m5-uZMaYRMr-S4pKckRsZCZf3SO3YRd99kwJBigE5cvFV0fIZN9TtN1dpwhqGQS1DII6D0JWvPzblzv-z89n4MUJWJTnckLR3B0757dpDvGsrzkH0fDqN9sUwyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840188271</pqid></control><display><type>article</type><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><source>PubMed Central (Open access)</source><source>JSTOR Archival Journals</source><creator>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</creator><creatorcontrib>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</creatorcontrib><description>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010930108</identifier><identifier>PMID: 21187381</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal behavior ; Animals ; Behavior, Animal ; Biological Sciences ; Brain ; Brain - metabolism ; Central Nervous System - physiology ; Cognitive science ; Dopamine ; Dopamine - deficiency ; Dopamine - physiology ; Dopaminergic neurons ; Drosophila ; Drosophila - physiology ; Frameshift Mutation ; Homozygote ; Insects ; Levodopa - chemistry ; Memory ; Memory interference ; Movement ; Mutation ; Nervous system ; Neurons ; Neuroscience ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Odors ; Phototaxis ; Proteins ; Smell ; Sugars ; Time Factors ; Tyrosine 3-Monooxygenase - genetics ; Walking</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.834-839</ispartof><rights>Copyright National Academy of Sciences Jan 11, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</citedby><cites>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25770867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25770867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21187381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04795071$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riemensperger, Thomas</creatorcontrib><creatorcontrib>Isabel, Guillaume</creatorcontrib><creatorcontrib>Coulom, Hélène</creatorcontrib><creatorcontrib>Neuser, Kirsa</creatorcontrib><creatorcontrib>Seugnet, Laurent</creatorcontrib><creatorcontrib>Kume, Kazuhiko</creatorcontrib><creatorcontrib>Iché-Torres, Magali</creatorcontrib><creatorcontrib>Cassar, Marlène</creatorcontrib><creatorcontrib>Strauss, Roland</creatorcontrib><creatorcontrib>Preat, Thomas</creatorcontrib><creatorcontrib>Hirsh, Jay</creatorcontrib><creatorcontrib>Birman, Serge</creatorcontrib><creatorcontrib>Nash, Howard</creatorcontrib><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Central Nervous System - physiology</subject><subject>Cognitive science</subject><subject>Dopamine</subject><subject>Dopamine - deficiency</subject><subject>Dopamine - physiology</subject><subject>Dopaminergic neurons</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Frameshift Mutation</subject><subject>Homozygote</subject><subject>Insects</subject><subject>Levodopa - chemistry</subject><subject>Memory</subject><subject>Memory interference</subject><subject>Movement</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Odors</subject><subject>Phototaxis</subject><subject>Proteins</subject><subject>Smell</subject><subject>Sugars</subject><subject>Time Factors</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><subject>Walking</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkk2P0zAQhi0EYsvCmRMo4oI4hJ1xnNi-IC3LxyJV4gLiaLmOQ1wldrDTSv33OGrZwl642CPP847Hr4eQ5whvEXh1NXmdcoQgq7yIB2SVQywbJuEhWQFQXgpG2QV5ktIWAGQt4DG5oIiCVwJX5Md72-u9C1EPhQk-2V87641NReiKNkx6dN4Wre2ccfn8UDhfzL0tPsSQwtS7QRfG-nlRexv3YZeKdEizHZ-SR50ekn122i_J908fv93cluuvn7_cXK9LU1M5l5aaxgLfcI1trRs0QDsBtUQOutXY6JpRs8HGsLajxjSipq3V7aaVpmuAieqSvDvWnXab0banZtQU3ajjQQXt1L8Z73r1M-xVBTQ7yHOBN8cC_T3Z7fVaLWfAuKyB4x4z-_p0WQzZpzSr0SVjh0F7m5-uZMaYRMr-S4pKckRsZCZf3SO3YRd99kwJBigE5cvFV0fIZN9TtN1dpwhqGQS1DII6D0JWvPzblzv-z89n4MUJWJTnckLR3B0757dpDvGsrzkH0fDqN9sUwyA</recordid><startdate>20110111</startdate><enddate>20110111</enddate><creator>Riemensperger, Thomas</creator><creator>Isabel, Guillaume</creator><creator>Coulom, Hélène</creator><creator>Neuser, Kirsa</creator><creator>Seugnet, Laurent</creator><creator>Kume, Kazuhiko</creator><creator>Iché-Torres, Magali</creator><creator>Cassar, Marlène</creator><creator>Strauss, Roland</creator><creator>Preat, Thomas</creator><creator>Hirsh, Jay</creator><creator>Birman, Serge</creator><creator>Nash, Howard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20110111</creationdate><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><author>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Central Nervous System - physiology</topic><topic>Cognitive science</topic><topic>Dopamine</topic><topic>Dopamine - deficiency</topic><topic>Dopamine - physiology</topic><topic>Dopaminergic neurons</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Frameshift Mutation</topic><topic>Homozygote</topic><topic>Insects</topic><topic>Levodopa - chemistry</topic><topic>Memory</topic><topic>Memory interference</topic><topic>Movement</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Odors</topic><topic>Phototaxis</topic><topic>Proteins</topic><topic>Smell</topic><topic>Sugars</topic><topic>Time Factors</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riemensperger, Thomas</creatorcontrib><creatorcontrib>Isabel, Guillaume</creatorcontrib><creatorcontrib>Coulom, Hélène</creatorcontrib><creatorcontrib>Neuser, Kirsa</creatorcontrib><creatorcontrib>Seugnet, Laurent</creatorcontrib><creatorcontrib>Kume, Kazuhiko</creatorcontrib><creatorcontrib>Iché-Torres, Magali</creatorcontrib><creatorcontrib>Cassar, Marlène</creatorcontrib><creatorcontrib>Strauss, Roland</creatorcontrib><creatorcontrib>Preat, Thomas</creatorcontrib><creatorcontrib>Hirsh, Jay</creatorcontrib><creatorcontrib>Birman, Serge</creatorcontrib><creatorcontrib>Nash, Howard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riemensperger, Thomas</au><au>Isabel, Guillaume</au><au>Coulom, Hélène</au><au>Neuser, Kirsa</au><au>Seugnet, Laurent</au><au>Kume, Kazuhiko</au><au>Iché-Torres, Magali</au><au>Cassar, Marlène</au><au>Strauss, Roland</au><au>Preat, Thomas</au><au>Hirsh, Jay</au><au>Birman, Serge</au><au>Nash, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-01-11</date><risdate>2011</risdate><volume>108</volume><issue>2</issue><spage>834</spage><epage>839</epage><pages>834-839</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21187381</pmid><doi>10.1073/pnas.1010930108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.834-839
issn 0027-8424
1091-6490
language eng
recordid cdi_hal_primary_oai_HAL_hal_04795071v1
source PubMed Central (Open access); JSTOR Archival Journals
subjects Animal behavior
Animals
Behavior, Animal
Biological Sciences
Brain
Brain - metabolism
Central Nervous System - physiology
Cognitive science
Dopamine
Dopamine - deficiency
Dopamine - physiology
Dopaminergic neurons
Drosophila
Drosophila - physiology
Frameshift Mutation
Homozygote
Insects
Levodopa - chemistry
Memory
Memory interference
Movement
Mutation
Nervous system
Neurons
Neuroscience
Neurotransmitter Agents - metabolism
Neurotransmitters
Odors
Phototaxis
Proteins
Smell
Sugars
Time Factors
Tyrosine 3-Monooxygenase - genetics
Walking
title Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20consequences%20of%20dopamine%20deficiency%20in%20the%20Drosophila%20central%20nervous%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Riemensperger,%20Thomas&rft.date=2011-01-11&rft.volume=108&rft.issue=2&rft.spage=834&rft.epage=839&rft.pages=834-839&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010930108&rft_dat=%3Cjstor_hal_p%3E25770867%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=840188271&rft_id=info:pmid/21187381&rft_jstor_id=25770867&rfr_iscdi=true