Loading…
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (2), p.834-839 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483 |
container_end_page | 839 |
container_issue | 2 |
container_start_page | 834 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Riemensperger, Thomas Isabel, Guillaume Coulom, Hélène Neuser, Kirsa Seugnet, Laurent Kume, Kazuhiko Iché-Torres, Magali Cassar, Marlène Strauss, Roland Preat, Thomas Hirsh, Jay Birman, Serge Nash, Howard |
description | The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. |
doi_str_mv | 10.1073/pnas.1010930108 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04795071v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25770867</jstor_id><sourcerecordid>25770867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhi0EYsvCmRMo4oI4hJ1xnNi-IC3LxyJV4gLiaLmOQ1wldrDTSv33OGrZwl642CPP847Hr4eQ5whvEXh1NXmdcoQgq7yIB2SVQywbJuEhWQFQXgpG2QV5ktIWAGQt4DG5oIiCVwJX5Md72-u9C1EPhQk-2V87641NReiKNkx6dN4Wre2ccfn8UDhfzL0tPsSQwtS7QRfG-nlRexv3YZeKdEizHZ-SR50ekn122i_J908fv93cluuvn7_cXK9LU1M5l5aaxgLfcI1trRs0QDsBtUQOutXY6JpRs8HGsLajxjSipq3V7aaVpmuAieqSvDvWnXab0banZtQU3ajjQQXt1L8Z73r1M-xVBTQ7yHOBN8cC_T3Z7fVaLWfAuKyB4x4z-_p0WQzZpzSr0SVjh0F7m5-uZMaYRMr-S4pKckRsZCZf3SO3YRd99kwJBigE5cvFV0fIZN9TtN1dpwhqGQS1DII6D0JWvPzblzv-z89n4MUJWJTnckLR3B0757dpDvGsrzkH0fDqN9sUwyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840188271</pqid></control><display><type>article</type><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><source>PubMed Central (Open access)</source><source>JSTOR Archival Journals</source><creator>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</creator><creatorcontrib>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</creatorcontrib><description>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010930108</identifier><identifier>PMID: 21187381</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal behavior ; Animals ; Behavior, Animal ; Biological Sciences ; Brain ; Brain - metabolism ; Central Nervous System - physiology ; Cognitive science ; Dopamine ; Dopamine - deficiency ; Dopamine - physiology ; Dopaminergic neurons ; Drosophila ; Drosophila - physiology ; Frameshift Mutation ; Homozygote ; Insects ; Levodopa - chemistry ; Memory ; Memory interference ; Movement ; Mutation ; Nervous system ; Neurons ; Neuroscience ; Neurotransmitter Agents - metabolism ; Neurotransmitters ; Odors ; Phototaxis ; Proteins ; Smell ; Sugars ; Time Factors ; Tyrosine 3-Monooxygenase - genetics ; Walking</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.834-839</ispartof><rights>Copyright National Academy of Sciences Jan 11, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</citedby><cites>FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25770867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25770867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21187381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04795071$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riemensperger, Thomas</creatorcontrib><creatorcontrib>Isabel, Guillaume</creatorcontrib><creatorcontrib>Coulom, Hélène</creatorcontrib><creatorcontrib>Neuser, Kirsa</creatorcontrib><creatorcontrib>Seugnet, Laurent</creatorcontrib><creatorcontrib>Kume, Kazuhiko</creatorcontrib><creatorcontrib>Iché-Torres, Magali</creatorcontrib><creatorcontrib>Cassar, Marlène</creatorcontrib><creatorcontrib>Strauss, Roland</creatorcontrib><creatorcontrib>Preat, Thomas</creatorcontrib><creatorcontrib>Hirsh, Jay</creatorcontrib><creatorcontrib>Birman, Serge</creatorcontrib><creatorcontrib>Nash, Howard</creatorcontrib><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Central Nervous System - physiology</subject><subject>Cognitive science</subject><subject>Dopamine</subject><subject>Dopamine - deficiency</subject><subject>Dopamine - physiology</subject><subject>Dopaminergic neurons</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Frameshift Mutation</subject><subject>Homozygote</subject><subject>Insects</subject><subject>Levodopa - chemistry</subject><subject>Memory</subject><subject>Memory interference</subject><subject>Movement</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitters</subject><subject>Odors</subject><subject>Phototaxis</subject><subject>Proteins</subject><subject>Smell</subject><subject>Sugars</subject><subject>Time Factors</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><subject>Walking</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkk2P0zAQhi0EYsvCmRMo4oI4hJ1xnNi-IC3LxyJV4gLiaLmOQ1wldrDTSv33OGrZwl642CPP847Hr4eQ5whvEXh1NXmdcoQgq7yIB2SVQywbJuEhWQFQXgpG2QV5ktIWAGQt4DG5oIiCVwJX5Md72-u9C1EPhQk-2V87641NReiKNkx6dN4Wre2ccfn8UDhfzL0tPsSQwtS7QRfG-nlRexv3YZeKdEizHZ-SR50ekn122i_J908fv93cluuvn7_cXK9LU1M5l5aaxgLfcI1trRs0QDsBtUQOutXY6JpRs8HGsLajxjSipq3V7aaVpmuAieqSvDvWnXab0banZtQU3ajjQQXt1L8Z73r1M-xVBTQ7yHOBN8cC_T3Z7fVaLWfAuKyB4x4z-_p0WQzZpzSr0SVjh0F7m5-uZMaYRMr-S4pKckRsZCZf3SO3YRd99kwJBigE5cvFV0fIZN9TtN1dpwhqGQS1DII6D0JWvPzblzv-z89n4MUJWJTnckLR3B0757dpDvGsrzkH0fDqN9sUwyA</recordid><startdate>20110111</startdate><enddate>20110111</enddate><creator>Riemensperger, Thomas</creator><creator>Isabel, Guillaume</creator><creator>Coulom, Hélène</creator><creator>Neuser, Kirsa</creator><creator>Seugnet, Laurent</creator><creator>Kume, Kazuhiko</creator><creator>Iché-Torres, Magali</creator><creator>Cassar, Marlène</creator><creator>Strauss, Roland</creator><creator>Preat, Thomas</creator><creator>Hirsh, Jay</creator><creator>Birman, Serge</creator><creator>Nash, Howard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20110111</creationdate><title>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</title><author>Riemensperger, Thomas ; Isabel, Guillaume ; Coulom, Hélène ; Neuser, Kirsa ; Seugnet, Laurent ; Kume, Kazuhiko ; Iché-Torres, Magali ; Cassar, Marlène ; Strauss, Roland ; Preat, Thomas ; Hirsh, Jay ; Birman, Serge ; Nash, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Central Nervous System - physiology</topic><topic>Cognitive science</topic><topic>Dopamine</topic><topic>Dopamine - deficiency</topic><topic>Dopamine - physiology</topic><topic>Dopaminergic neurons</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Frameshift Mutation</topic><topic>Homozygote</topic><topic>Insects</topic><topic>Levodopa - chemistry</topic><topic>Memory</topic><topic>Memory interference</topic><topic>Movement</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitters</topic><topic>Odors</topic><topic>Phototaxis</topic><topic>Proteins</topic><topic>Smell</topic><topic>Sugars</topic><topic>Time Factors</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riemensperger, Thomas</creatorcontrib><creatorcontrib>Isabel, Guillaume</creatorcontrib><creatorcontrib>Coulom, Hélène</creatorcontrib><creatorcontrib>Neuser, Kirsa</creatorcontrib><creatorcontrib>Seugnet, Laurent</creatorcontrib><creatorcontrib>Kume, Kazuhiko</creatorcontrib><creatorcontrib>Iché-Torres, Magali</creatorcontrib><creatorcontrib>Cassar, Marlène</creatorcontrib><creatorcontrib>Strauss, Roland</creatorcontrib><creatorcontrib>Preat, Thomas</creatorcontrib><creatorcontrib>Hirsh, Jay</creatorcontrib><creatorcontrib>Birman, Serge</creatorcontrib><creatorcontrib>Nash, Howard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riemensperger, Thomas</au><au>Isabel, Guillaume</au><au>Coulom, Hélène</au><au>Neuser, Kirsa</au><au>Seugnet, Laurent</au><au>Kume, Kazuhiko</au><au>Iché-Torres, Magali</au><au>Cassar, Marlène</au><au>Strauss, Roland</au><au>Preat, Thomas</au><au>Hirsh, Jay</au><au>Birman, Serge</au><au>Nash, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral consequences of dopamine deficiency in the Drosophila central nervous system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-01-11</date><risdate>2011</risdate><volume>108</volume><issue>2</issue><spage>834</spage><epage>839</epage><pages>834-839</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently "masochistic" tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor L-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21187381</pmid><doi>10.1073/pnas.1010930108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (2), p.834-839 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04795071v1 |
source | PubMed Central (Open access); JSTOR Archival Journals |
subjects | Animal behavior Animals Behavior, Animal Biological Sciences Brain Brain - metabolism Central Nervous System - physiology Cognitive science Dopamine Dopamine - deficiency Dopamine - physiology Dopaminergic neurons Drosophila Drosophila - physiology Frameshift Mutation Homozygote Insects Levodopa - chemistry Memory Memory interference Movement Mutation Nervous system Neurons Neuroscience Neurotransmitter Agents - metabolism Neurotransmitters Odors Phototaxis Proteins Smell Sugars Time Factors Tyrosine 3-Monooxygenase - genetics Walking |
title | Behavioral consequences of dopamine deficiency in the Drosophila central nervous system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20consequences%20of%20dopamine%20deficiency%20in%20the%20Drosophila%20central%20nervous%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Riemensperger,%20Thomas&rft.date=2011-01-11&rft.volume=108&rft.issue=2&rft.spage=834&rft.epage=839&rft.pages=834-839&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010930108&rft_dat=%3Cjstor_hal_p%3E25770867%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-e2c6e07b7a1d5a61c02f8059170ada16a542cb16c4df2cc6852deadbd9cf60483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=840188271&rft_id=info:pmid/21187381&rft_jstor_id=25770867&rfr_iscdi=true |