Loading…

Engineered moiré photonic and phononic superlattices

Recent discoveries of Mott insulating and unconventional superconducting states in twisted bilayer graphene with moiré superlattices have not only reshaped the landscape of ‘twistronics’ but also sparked the rapidly growing fields of moiré photonic and phononic structures. These innovative moiré str...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2024-09, Vol.23 (9), p.1169-1178
Main Authors: Oudich, Mourad, Kong, Xianghong, Zhang, Tan, Qiu, Chengwei, Jing, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent discoveries of Mott insulating and unconventional superconducting states in twisted bilayer graphene with moiré superlattices have not only reshaped the landscape of ‘twistronics’ but also sparked the rapidly growing fields of moiré photonic and phononic structures. These innovative moiré structures have opened new routes of exploration for classical wave physics, leading to intriguing phenomena and robust control of electromagnetic and mechanical waves. Drawing inspiration from the success of twisted bilayer graphene, this Perspective describes an overarching framework of the emerging moiré photonic and phononic structures that promise novel classical wave devices. We begin with the fundamentals of moiré superlattices, before highlighting recent studies that exploit twist angle and interlayer coupling as new ingredients with which to engineer and tailor the band structures and effective material properties of photonic and phononic structures. Finally, we discuss the future directions and prospects of this emerging area in materials science and wave physics. Platforms that exhibit moiré patterns have the potential to tailor band structures and control electromagnetic and mechanical waves. This Perspective discusses the current state of the art, challenges and outlook within the realm of classical wave physics.
ISSN:1476-1122
1476-4660
1476-4660
DOI:10.1038/s41563-024-01950-9