Loading…

Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts

This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics 2010-07, Vol.24 (7-8), p.448-453
Main Authors: Hernández, Noslen, Talavera, Isneri, Porro, Diana, Dago, Angel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3
container_end_page 453
container_issue 7-8
container_start_page 448
container_title Journal of chemometrics
container_volume 24
creator Hernández, Noslen
Talavera, Isneri
Porro, Diana
Dago, Angel
description This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley & Sons, Ltd. A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.
doi_str_mv 10.1002/cem.1319
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04805188v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671322225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</originalsourceid><addsrcrecordid>eNp1kVFrFDEQxxdR8GwFP8IiCPqwbbLJbjaPZe311FOhKvUtTLKTa9rc7pnsVc9Pb5Y7ThDMy8A_P34zw2TZC0rOKCHlucH1GWVUPspmlEhZ0LL5_jibkaapC8ka9jR7FuMdIemP8Vl2f42rrYfgfmOXR-9MKq5_wBAxD7gKGKMb-twOIe9wxLB2PYxTMth8vMV8g8FgP8IKp8SEXRzBe9e7cZc8-bxtcwMpSnk8zZ5Y8BGfH-pJ9m1--bVdFMvPV-_ai2VheFmmibmooeMgiKwE8oYwrgnhVmvNBQMtbakJrQVveCVNrbtO8q62UIHVtq41O8ne7L234NUmuDWEnRrAqcXFUk0ZSdKKNs0DTezrPbsJw48txlGtXTToPfQ4bKNKfSgr06sS-vIf9G7Yhj5togSXrKoEqf_6TBhiDGiPA1CipgOpdCA1HSihrw4-iAa8DdAbF498yUrCGZ_6Fnvup_O4-69PtZcfD94D7-KIv448hHtVCyYqdfPpSt28_TD_cr14rwT7A8KfrYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749355706</pqid></control><display><type>article</type><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><source>Wiley</source><creator>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</creator><creatorcontrib>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</creatorcontrib><description>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley &amp; Sons, Ltd. A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</description><identifier>ISSN: 0886-9383</identifier><identifier>ISSN: 1099-128X</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1319</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Algorithms ; Analytical chemistry ; Applications ; Calibration ; Catalysis ; Catalysts ; Catalytic cracking ; Chemical Sciences ; Chemistry ; Crystallinity ; Exact sciences and technology ; Face centered cubic lattice ; FCC catalysts ; Fourier transforms ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; infrared spectroscopy ; Inverse ; Mathematical models ; multivariate calibration ; Regression ; Regression analysis ; sliced inverse regression ; Spectrum analysis ; Statistics ; support vector regression ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of chemometrics, 2010-07, Vol.24 (7-8), p.448-453</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jul/Aug 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23204345$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04805188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Talavera, Isneri</creatorcontrib><creatorcontrib>Porro, Diana</creatorcontrib><creatorcontrib>Dago, Angel</creatorcontrib><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley &amp; Sons, Ltd. A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Applications</subject><subject>Calibration</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Crystallinity</subject><subject>Exact sciences and technology</subject><subject>Face centered cubic lattice</subject><subject>FCC catalysts</subject><subject>Fourier transforms</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>infrared spectroscopy</subject><subject>Inverse</subject><subject>Mathematical models</subject><subject>multivariate calibration</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>sliced inverse regression</subject><subject>Spectrum analysis</subject><subject>Statistics</subject><subject>support vector regression</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0886-9383</issn><issn>1099-128X</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEQxxdR8GwFP8IiCPqwbbLJbjaPZe311FOhKvUtTLKTa9rc7pnsVc9Pb5Y7ThDMy8A_P34zw2TZC0rOKCHlucH1GWVUPspmlEhZ0LL5_jibkaapC8ka9jR7FuMdIemP8Vl2f42rrYfgfmOXR-9MKq5_wBAxD7gKGKMb-twOIe9wxLB2PYxTMth8vMV8g8FgP8IKp8SEXRzBe9e7cZc8-bxtcwMpSnk8zZ5Y8BGfH-pJ9m1--bVdFMvPV-_ai2VheFmmibmooeMgiKwE8oYwrgnhVmvNBQMtbakJrQVveCVNrbtO8q62UIHVtq41O8ne7L234NUmuDWEnRrAqcXFUk0ZSdKKNs0DTezrPbsJw48txlGtXTToPfQ4bKNKfSgr06sS-vIf9G7Yhj5togSXrKoEqf_6TBhiDGiPA1CipgOpdCA1HSihrw4-iAa8DdAbF498yUrCGZ_6Fnvup_O4-69PtZcfD94D7-KIv448hHtVCyYqdfPpSt28_TD_cr14rwT7A8KfrYs</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hernández, Noslen</creator><creator>Talavera, Isneri</creator><creator>Porro, Diana</creator><creator>Dago, Angel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201007</creationdate><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><author>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Applications</topic><topic>Calibration</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Crystallinity</topic><topic>Exact sciences and technology</topic><topic>Face centered cubic lattice</topic><topic>FCC catalysts</topic><topic>Fourier transforms</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>infrared spectroscopy</topic><topic>Inverse</topic><topic>Mathematical models</topic><topic>multivariate calibration</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>sliced inverse regression</topic><topic>Spectrum analysis</topic><topic>Statistics</topic><topic>support vector regression</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Talavera, Isneri</creatorcontrib><creatorcontrib>Porro, Diana</creatorcontrib><creatorcontrib>Dago, Angel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, Noslen</au><au>Talavera, Isneri</au><au>Porro, Diana</au><au>Dago, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2010-07</date><risdate>2010</risdate><volume>24</volume><issue>7-8</issue><spage>448</spage><epage>453</epage><pages>448-453</pages><issn>0886-9383</issn><issn>1099-128X</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley &amp; Sons, Ltd. A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cem.1319</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2010-07, Vol.24 (7-8), p.448-453
issn 0886-9383
1099-128X
1099-128X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04805188v1
source Wiley
subjects Accuracy
Algorithms
Analytical chemistry
Applications
Calibration
Catalysis
Catalysts
Catalytic cracking
Chemical Sciences
Chemistry
Crystallinity
Exact sciences and technology
Face centered cubic lattice
FCC catalysts
Fourier transforms
General and physical chemistry
General. Nomenclature, chemical documentation, computer chemistry
infrared spectroscopy
Inverse
Mathematical models
multivariate calibration
Regression
Regression analysis
sliced inverse regression
Spectrum analysis
Statistics
support vector regression
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20sliced%20inverse%20regression%20for%20determination%20of%20the%20percentage%20of%20crystallinity%20in%20FCC%20catalysts&rft.jtitle=Journal%20of%20chemometrics&rft.au=Hern%C3%A1ndez,%20Noslen&rft.date=2010-07&rft.volume=24&rft.issue=7-8&rft.spage=448&rft.epage=453&rft.pages=448-453&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1319&rft_dat=%3Cproquest_hal_p%3E1671322225%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749355706&rft_id=info:pmid/&rfr_iscdi=true