Loading…
Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts
This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool t...
Saved in:
Published in: | Journal of chemometrics 2010-07, Vol.24 (7-8), p.448-453 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3 |
container_end_page | 453 |
container_issue | 7-8 |
container_start_page | 448 |
container_title | Journal of chemometrics |
container_volume | 24 |
creator | Hernández, Noslen Talavera, Isneri Porro, Diana Dago, Angel |
description | This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley & Sons, Ltd.
A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done. |
doi_str_mv | 10.1002/cem.1319 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04805188v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671322225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</originalsourceid><addsrcrecordid>eNp1kVFrFDEQxxdR8GwFP8IiCPqwbbLJbjaPZe311FOhKvUtTLKTa9rc7pnsVc9Pb5Y7ThDMy8A_P34zw2TZC0rOKCHlucH1GWVUPspmlEhZ0LL5_jibkaapC8ka9jR7FuMdIemP8Vl2f42rrYfgfmOXR-9MKq5_wBAxD7gKGKMb-twOIe9wxLB2PYxTMth8vMV8g8FgP8IKp8SEXRzBe9e7cZc8-bxtcwMpSnk8zZ5Y8BGfH-pJ9m1--bVdFMvPV-_ai2VheFmmibmooeMgiKwE8oYwrgnhVmvNBQMtbakJrQVveCVNrbtO8q62UIHVtq41O8ne7L234NUmuDWEnRrAqcXFUk0ZSdKKNs0DTezrPbsJw48txlGtXTToPfQ4bKNKfSgr06sS-vIf9G7Yhj5togSXrKoEqf_6TBhiDGiPA1CipgOpdCA1HSihrw4-iAa8DdAbF498yUrCGZ_6Fnvup_O4-69PtZcfD94D7-KIv448hHtVCyYqdfPpSt28_TD_cr14rwT7A8KfrYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749355706</pqid></control><display><type>article</type><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><source>Wiley</source><creator>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</creator><creatorcontrib>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</creatorcontrib><description>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley & Sons, Ltd.
A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</description><identifier>ISSN: 0886-9383</identifier><identifier>ISSN: 1099-128X</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1319</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Accuracy ; Algorithms ; Analytical chemistry ; Applications ; Calibration ; Catalysis ; Catalysts ; Catalytic cracking ; Chemical Sciences ; Chemistry ; Crystallinity ; Exact sciences and technology ; Face centered cubic lattice ; FCC catalysts ; Fourier transforms ; General and physical chemistry ; General. Nomenclature, chemical documentation, computer chemistry ; infrared spectroscopy ; Inverse ; Mathematical models ; multivariate calibration ; Regression ; Regression analysis ; sliced inverse regression ; Spectrum analysis ; Statistics ; support vector regression ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of chemometrics, 2010-07, Vol.24 (7-8), p.448-453</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Jul/Aug 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23204345$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04805188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Talavera, Isneri</creatorcontrib><creatorcontrib>Porro, Diana</creatorcontrib><creatorcontrib>Dago, Angel</creatorcontrib><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley & Sons, Ltd.
A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Applications</subject><subject>Calibration</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic cracking</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Crystallinity</subject><subject>Exact sciences and technology</subject><subject>Face centered cubic lattice</subject><subject>FCC catalysts</subject><subject>Fourier transforms</subject><subject>General and physical chemistry</subject><subject>General. Nomenclature, chemical documentation, computer chemistry</subject><subject>infrared spectroscopy</subject><subject>Inverse</subject><subject>Mathematical models</subject><subject>multivariate calibration</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>sliced inverse regression</subject><subject>Spectrum analysis</subject><subject>Statistics</subject><subject>support vector regression</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0886-9383</issn><issn>1099-128X</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kVFrFDEQxxdR8GwFP8IiCPqwbbLJbjaPZe311FOhKvUtTLKTa9rc7pnsVc9Pb5Y7ThDMy8A_P34zw2TZC0rOKCHlucH1GWVUPspmlEhZ0LL5_jibkaapC8ka9jR7FuMdIemP8Vl2f42rrYfgfmOXR-9MKq5_wBAxD7gKGKMb-twOIe9wxLB2PYxTMth8vMV8g8FgP8IKp8SEXRzBe9e7cZc8-bxtcwMpSnk8zZ5Y8BGfH-pJ9m1--bVdFMvPV-_ai2VheFmmibmooeMgiKwE8oYwrgnhVmvNBQMtbakJrQVveCVNrbtO8q62UIHVtq41O8ne7L234NUmuDWEnRrAqcXFUk0ZSdKKNs0DTezrPbsJw48txlGtXTToPfQ4bKNKfSgr06sS-vIf9G7Yhj5togSXrKoEqf_6TBhiDGiPA1CipgOpdCA1HSihrw4-iAa8DdAbF498yUrCGZ_6Fnvup_O4-69PtZcfD94D7-KIv448hHtVCyYqdfPpSt28_TD_cr14rwT7A8KfrYs</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hernández, Noslen</creator><creator>Talavera, Isneri</creator><creator>Porro, Diana</creator><creator>Dago, Angel</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201007</creationdate><title>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</title><author>Hernández, Noslen ; Talavera, Isneri ; Porro, Diana ; Dago, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Applications</topic><topic>Calibration</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic cracking</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Crystallinity</topic><topic>Exact sciences and technology</topic><topic>Face centered cubic lattice</topic><topic>FCC catalysts</topic><topic>Fourier transforms</topic><topic>General and physical chemistry</topic><topic>General. Nomenclature, chemical documentation, computer chemistry</topic><topic>infrared spectroscopy</topic><topic>Inverse</topic><topic>Mathematical models</topic><topic>multivariate calibration</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>sliced inverse regression</topic><topic>Spectrum analysis</topic><topic>Statistics</topic><topic>support vector regression</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Talavera, Isneri</creatorcontrib><creatorcontrib>Porro, Diana</creatorcontrib><creatorcontrib>Dago, Angel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández, Noslen</au><au>Talavera, Isneri</au><au>Porro, Diana</au><au>Dago, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2010-07</date><risdate>2010</risdate><volume>24</volume><issue>7-8</issue><spage>448</spage><epage>453</epage><pages>448-453</pages><issn>0886-9383</issn><issn>1099-128X</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>This paper proposes a new calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts (FCC) using Fourier transform mid‐infrared spectroscopy (FT‐MIR). RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between independent and dependent variables. Combinations of RSIR with linear and nonlinear learning algorithms like multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. A comparison of performance among the different approaches, including previous results reached using PLS, was done. RSIR–MLR achieved the highest prediction accuracy, leading to a simple calibration model. Copyright © 2010 John Wiley & Sons, Ltd.
A calibration model based on regularized sliced inverse regression (RSIR) for predicting the percentage of crystallinity of fluidized catalytic cracking catalysts using FT‐MIR is proposed. RSIR is an effective dimension‐reduction tool that looks for a proper dimension‐reduction subspace without requiring a pre‐specified functional form for the relation between response and predictors. RSIR combined with multiple linear regression (MLR) and Support vector regression (SVR) were applied to the preprocessed data set. Comparison of performance among the different approaches was done.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cem.1319</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2010-07, Vol.24 (7-8), p.448-453 |
issn | 0886-9383 1099-128X 1099-128X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04805188v1 |
source | Wiley |
subjects | Accuracy Algorithms Analytical chemistry Applications Calibration Catalysis Catalysts Catalytic cracking Chemical Sciences Chemistry Crystallinity Exact sciences and technology Face centered cubic lattice FCC catalysts Fourier transforms General and physical chemistry General. Nomenclature, chemical documentation, computer chemistry infrared spectroscopy Inverse Mathematical models multivariate calibration Regression Regression analysis sliced inverse regression Spectrum analysis Statistics support vector regression Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Regularized sliced inverse regression for determination of the percentage of crystallinity in FCC catalysts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20sliced%20inverse%20regression%20for%20determination%20of%20the%20percentage%20of%20crystallinity%20in%20FCC%20catalysts&rft.jtitle=Journal%20of%20chemometrics&rft.au=Hern%C3%A1ndez,%20Noslen&rft.date=2010-07&rft.volume=24&rft.issue=7-8&rft.spage=448&rft.epage=453&rft.pages=448-453&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1319&rft_dat=%3Cproquest_hal_p%3E1671322225%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4229-1476ad4a70957e48034b004fbbb473ab9f2b016748459c6bdd94d6fa5afbf66b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749355706&rft_id=info:pmid/&rfr_iscdi=true |