Loading…

Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity

The efficiency of electron collection in a dye‐sensitized solar cell (DSC) is determined by a delicate balance between electronic transport and recombination losses caused by electron transfer to dye cations and electron acceptors. While state‐of‐the‐art DSCs have demonstrated quantitative electron...

Full description

Saved in:
Bibliographic Details
Published in:Solar RRL 2024-05, Vol.8 (10), p.n/a
Main Authors: Sánchez‐Fernández, Patricia, Aranda, Clara A., Escalante, Renán, Riquelme, Antonio J., Demadrille, Renaud, Pistor, Paul, Oskam, Gerko, Anta, Juan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2789-6fa9d1dad197b9e5beb350a0aa3a47683f1e8990347727779a1c664fca3ef1033
container_end_page n/a
container_issue 10
container_start_page
container_title Solar RRL
container_volume 8
creator Sánchez‐Fernández, Patricia
Aranda, Clara A.
Escalante, Renán
Riquelme, Antonio J.
Demadrille, Renaud
Pistor, Paul
Oskam, Gerko
Anta, Juan A.
description The efficiency of electron collection in a dye‐sensitized solar cell (DSC) is determined by a delicate balance between electronic transport and recombination losses caused by electron transfer to dye cations and electron acceptors. While state‐of‐the‐art DSCs have demonstrated quantitative electron collection under standard 1 sun conditions, the nonlinear nature of the trapping/detrapping dynamics in the photoanode with respect to the stored electronic charge can result in suboptimal performance under the low illumination intensity conditions commonly found indoors. Herein, the key factors influencing electron collection in relation to light intensity using impedance spectroscopy and numerical analysis are thoroughly examined. Impedance analysis reveals that the electron diffusion length tends to decrease as the quasi‐Fermi level is lowered, approaching the critical limit (Ln/d ≈ 1) at intensities characteristic of indoor illumination. A range of tert‐butyl pyridine concentrations and different thermal and chemical treatments of the TiO2 are tested, showing that this low intensity limitation is inherent to the multiple‐trapping mechanism that governs the functioning of a DSC. It is concluded that relatively high ideality factors, nonoptimal electrolyte compositions, or small variations in the quality of the TiO2 layer can result in electron collection limitations that are not apparent under 1 sun but become noticeable at low light intensities. Dye solar cells at low light intensities can have electron collection issues that do now show up at standard 1 sun conditions: “For we do not know what beasts the night dreams when its hours grow too long for even God to be awake”—Hildred Castaigne.
doi_str_mv 10.1002/solr.202400149
format article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04813235v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SOLR202400149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2789-6fa9d1dad197b9e5beb350a0aa3a47683f1e8990347727779a1c664fca3ef1033</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOOaunnP10Jk0WdMcR_2xQWGwTdBTeG1TF-mSkQRH_3s3J9Obp_d4fN87fAjdUjKmhKT3wXV-nJKUE0K5vECDlGUioTJ_vfyzX6NRCB_kIHAu8owO0FvhtjsdTTTO4krHvdYWrz3YsHM-YrANXurabStj4ZsxFj_0Gq9cBx4XuusChohLt8eled9EPLdR22Bif4OuWuiCHv3MIXp5elwXs6RcPM-LaZnUqchlkrUgG9pAQ6WopJ5UumITAgSAARdZzlqqcykJ40KkQggJtM4y3tbAdEsJY0N0d_q7gU7tvNmC75UDo2bTUh1vhOeUpWzySQ_s-MTW3oXgdXsWKFHHjurYUZ07HgR5Evam0_0_tFotyuWv-wWetXc9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sánchez‐Fernández, Patricia ; Aranda, Clara A. ; Escalante, Renán ; Riquelme, Antonio J. ; Demadrille, Renaud ; Pistor, Paul ; Oskam, Gerko ; Anta, Juan A.</creator><creatorcontrib>Sánchez‐Fernández, Patricia ; Aranda, Clara A. ; Escalante, Renán ; Riquelme, Antonio J. ; Demadrille, Renaud ; Pistor, Paul ; Oskam, Gerko ; Anta, Juan A.</creatorcontrib><description>The efficiency of electron collection in a dye‐sensitized solar cell (DSC) is determined by a delicate balance between electronic transport and recombination losses caused by electron transfer to dye cations and electron acceptors. While state‐of‐the‐art DSCs have demonstrated quantitative electron collection under standard 1 sun conditions, the nonlinear nature of the trapping/detrapping dynamics in the photoanode with respect to the stored electronic charge can result in suboptimal performance under the low illumination intensity conditions commonly found indoors. Herein, the key factors influencing electron collection in relation to light intensity using impedance spectroscopy and numerical analysis are thoroughly examined. Impedance analysis reveals that the electron diffusion length tends to decrease as the quasi‐Fermi level is lowered, approaching the critical limit (Ln/d ≈ 1) at intensities characteristic of indoor illumination. A range of tert‐butyl pyridine concentrations and different thermal and chemical treatments of the TiO2 are tested, showing that this low intensity limitation is inherent to the multiple‐trapping mechanism that governs the functioning of a DSC. It is concluded that relatively high ideality factors, nonoptimal electrolyte compositions, or small variations in the quality of the TiO2 layer can result in electron collection limitations that are not apparent under 1 sun but become noticeable at low light intensities. Dye solar cells at low light intensities can have electron collection issues that do now show up at standard 1 sun conditions: “For we do not know what beasts the night dreams when its hours grow too long for even God to be awake”—Hildred Castaigne.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202400149</identifier><language>eng</language><publisher>Wiley</publisher><subject>Chemical Sciences ; dye‐sensitized solar cells ; electron transport ; Engineering Sciences ; impedance spectroscopy ; indoor photovoltaics</subject><ispartof>Solar RRL, 2024-05, Vol.8 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2789-6fa9d1dad197b9e5beb350a0aa3a47683f1e8990347727779a1c664fca3ef1033</cites><orcidid>0000-0002-2105-5874 ; 0000-0002-5100-5448 ; 0009-0005-9369-9678 ; 0000-0002-8002-0313 ; 0000-0003-2445-3664 ; 0000-0002-9244-915X ; 0000-0002-7455-5709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04813235$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez‐Fernández, Patricia</creatorcontrib><creatorcontrib>Aranda, Clara A.</creatorcontrib><creatorcontrib>Escalante, Renán</creatorcontrib><creatorcontrib>Riquelme, Antonio J.</creatorcontrib><creatorcontrib>Demadrille, Renaud</creatorcontrib><creatorcontrib>Pistor, Paul</creatorcontrib><creatorcontrib>Oskam, Gerko</creatorcontrib><creatorcontrib>Anta, Juan A.</creatorcontrib><title>Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity</title><title>Solar RRL</title><description>The efficiency of electron collection in a dye‐sensitized solar cell (DSC) is determined by a delicate balance between electronic transport and recombination losses caused by electron transfer to dye cations and electron acceptors. While state‐of‐the‐art DSCs have demonstrated quantitative electron collection under standard 1 sun conditions, the nonlinear nature of the trapping/detrapping dynamics in the photoanode with respect to the stored electronic charge can result in suboptimal performance under the low illumination intensity conditions commonly found indoors. Herein, the key factors influencing electron collection in relation to light intensity using impedance spectroscopy and numerical analysis are thoroughly examined. Impedance analysis reveals that the electron diffusion length tends to decrease as the quasi‐Fermi level is lowered, approaching the critical limit (Ln/d ≈ 1) at intensities characteristic of indoor illumination. A range of tert‐butyl pyridine concentrations and different thermal and chemical treatments of the TiO2 are tested, showing that this low intensity limitation is inherent to the multiple‐trapping mechanism that governs the functioning of a DSC. It is concluded that relatively high ideality factors, nonoptimal electrolyte compositions, or small variations in the quality of the TiO2 layer can result in electron collection limitations that are not apparent under 1 sun but become noticeable at low light intensities. Dye solar cells at low light intensities can have electron collection issues that do now show up at standard 1 sun conditions: “For we do not know what beasts the night dreams when its hours grow too long for even God to be awake”—Hildred Castaigne.</description><subject>Chemical Sciences</subject><subject>dye‐sensitized solar cells</subject><subject>electron transport</subject><subject>Engineering Sciences</subject><subject>impedance spectroscopy</subject><subject>indoor photovoltaics</subject><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9LwzAUgIMoOOaunnP10Jk0WdMcR_2xQWGwTdBTeG1TF-mSkQRH_3s3J9Obp_d4fN87fAjdUjKmhKT3wXV-nJKUE0K5vECDlGUioTJ_vfyzX6NRCB_kIHAu8owO0FvhtjsdTTTO4krHvdYWrz3YsHM-YrANXurabStj4ZsxFj_0Gq9cBx4XuusChohLt8eled9EPLdR22Bif4OuWuiCHv3MIXp5elwXs6RcPM-LaZnUqchlkrUgG9pAQ6WopJ5UumITAgSAARdZzlqqcykJ40KkQggJtM4y3tbAdEsJY0N0d_q7gU7tvNmC75UDo2bTUh1vhOeUpWzySQ_s-MTW3oXgdXsWKFHHjurYUZ07HgR5Evam0_0_tFotyuWv-wWetXc9</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Sánchez‐Fernández, Patricia</creator><creator>Aranda, Clara A.</creator><creator>Escalante, Renán</creator><creator>Riquelme, Antonio J.</creator><creator>Demadrille, Renaud</creator><creator>Pistor, Paul</creator><creator>Oskam, Gerko</creator><creator>Anta, Juan A.</creator><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2105-5874</orcidid><orcidid>https://orcid.org/0000-0002-5100-5448</orcidid><orcidid>https://orcid.org/0009-0005-9369-9678</orcidid><orcidid>https://orcid.org/0000-0002-8002-0313</orcidid><orcidid>https://orcid.org/0000-0003-2445-3664</orcidid><orcidid>https://orcid.org/0000-0002-9244-915X</orcidid><orcidid>https://orcid.org/0000-0002-7455-5709</orcidid></search><sort><creationdate>202405</creationdate><title>Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity</title><author>Sánchez‐Fernández, Patricia ; Aranda, Clara A. ; Escalante, Renán ; Riquelme, Antonio J. ; Demadrille, Renaud ; Pistor, Paul ; Oskam, Gerko ; Anta, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2789-6fa9d1dad197b9e5beb350a0aa3a47683f1e8990347727779a1c664fca3ef1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><topic>dye‐sensitized solar cells</topic><topic>electron transport</topic><topic>Engineering Sciences</topic><topic>impedance spectroscopy</topic><topic>indoor photovoltaics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez‐Fernández, Patricia</creatorcontrib><creatorcontrib>Aranda, Clara A.</creatorcontrib><creatorcontrib>Escalante, Renán</creatorcontrib><creatorcontrib>Riquelme, Antonio J.</creatorcontrib><creatorcontrib>Demadrille, Renaud</creatorcontrib><creatorcontrib>Pistor, Paul</creatorcontrib><creatorcontrib>Oskam, Gerko</creatorcontrib><creatorcontrib>Anta, Juan A.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez‐Fernández, Patricia</au><au>Aranda, Clara A.</au><au>Escalante, Renán</au><au>Riquelme, Antonio J.</au><au>Demadrille, Renaud</au><au>Pistor, Paul</au><au>Oskam, Gerko</au><au>Anta, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity</atitle><jtitle>Solar RRL</jtitle><date>2024-05</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><epage>n/a</epage><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>The efficiency of electron collection in a dye‐sensitized solar cell (DSC) is determined by a delicate balance between electronic transport and recombination losses caused by electron transfer to dye cations and electron acceptors. While state‐of‐the‐art DSCs have demonstrated quantitative electron collection under standard 1 sun conditions, the nonlinear nature of the trapping/detrapping dynamics in the photoanode with respect to the stored electronic charge can result in suboptimal performance under the low illumination intensity conditions commonly found indoors. Herein, the key factors influencing electron collection in relation to light intensity using impedance spectroscopy and numerical analysis are thoroughly examined. Impedance analysis reveals that the electron diffusion length tends to decrease as the quasi‐Fermi level is lowered, approaching the critical limit (Ln/d ≈ 1) at intensities characteristic of indoor illumination. A range of tert‐butyl pyridine concentrations and different thermal and chemical treatments of the TiO2 are tested, showing that this low intensity limitation is inherent to the multiple‐trapping mechanism that governs the functioning of a DSC. It is concluded that relatively high ideality factors, nonoptimal electrolyte compositions, or small variations in the quality of the TiO2 layer can result in electron collection limitations that are not apparent under 1 sun but become noticeable at low light intensities. Dye solar cells at low light intensities can have electron collection issues that do now show up at standard 1 sun conditions: “For we do not know what beasts the night dreams when its hours grow too long for even God to be awake”—Hildred Castaigne.</abstract><pub>Wiley</pub><doi>10.1002/solr.202400149</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2105-5874</orcidid><orcidid>https://orcid.org/0000-0002-5100-5448</orcidid><orcidid>https://orcid.org/0009-0005-9369-9678</orcidid><orcidid>https://orcid.org/0000-0002-8002-0313</orcidid><orcidid>https://orcid.org/0000-0003-2445-3664</orcidid><orcidid>https://orcid.org/0000-0002-9244-915X</orcidid><orcidid>https://orcid.org/0000-0002-7455-5709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2367-198X
ispartof Solar RRL, 2024-05, Vol.8 (10), p.n/a
issn 2367-198X
2367-198X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04813235v1
source Wiley-Blackwell Read & Publish Collection
subjects Chemical Sciences
dye‐sensitized solar cells
electron transport
Engineering Sciences
impedance spectroscopy
indoor photovoltaics
title Competition between Transport and Recombination in Dye Solar Cells at Low Light Intensity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competition%20between%20Transport%20and%20Recombination%20in%20Dye%20Solar%20Cells%20at%20Low%20Light%20Intensity&rft.jtitle=Solar%20RRL&rft.au=S%C3%A1nchez%E2%80%90Fern%C3%A1ndez,%20Patricia&rft.date=2024-05&rft.volume=8&rft.issue=10&rft.epage=n/a&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202400149&rft_dat=%3Cwiley_hal_p%3ESOLR202400149%3C/wiley_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2789-6fa9d1dad197b9e5beb350a0aa3a47683f1e8990347727779a1c664fca3ef1033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true