Loading…

In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives

EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity on human melanoma cell lines compared to fotemustine and imiquimod used as references. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehic...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry 2008-07, Vol.16 (13), p.6601-6610
Main Authors: Moarbess, Georges, Deleuze-Masquefa, Carine, Bonnard, Vanessa, Gayraud-Paniagua, Stéphanie, Vidal, Jean-Rémi, Bressolle, Françoise, Pinguet, Frédéric, Bonnet, Pierre-Antoine
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-735a00bd5f69097a029c75d58c46ac1fb3cff913834090b99cd6ff57f98c3da33
cites
container_end_page 6610
container_issue 13
container_start_page 6601
container_title Bioorganic & medicinal chemistry
container_volume 16
creator Moarbess, Georges
Deleuze-Masquefa, Carine
Bonnard, Vanessa
Gayraud-Paniagua, Stéphanie
Vidal, Jean-Rémi
Bressolle, Françoise
Pinguet, Frédéric
Bonnet, Pierre-Antoine
description EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity on human melanoma cell lines compared to fotemustine and imiquimod used as references. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments. Imidazoquinoxaline and pyrazoloquinoxaline derivatives, analogues of imiquimod, were synthesized, and their in vitro cytotoxic and pharmacodynamic activities were evaluated. In vitro cytotoxicity studies were assessed against melanoma (A375, M4Be, RPMI-7591), colon (LS174T), breast (MCF7), and lymphoma (Raji) human cancer cell lines. In vivo studies were carried out in M4Be xenografted athymic mice. EAPB0103, EAPB0201, EAPB0202, and EAPB0203 showed significant in vitro activities against A375 compared to fotemustine and imiquimod used as references. These compounds were 6–110 and 2–45 times more active than fotemustine and imiquimod, respectively. EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity. EAPB0203 has also a more potent cytotoxic activity than imiquimod and fotemustine in M4Be and RPMI-7591 and interesting cytotoxic activity in other tumor cell lines tested. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments.
doi_str_mv 10.1016/j.bmc.2008.05.022
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04828480v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089608004513</els_id><sourcerecordid>69212919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-735a00bd5f69097a029c75d58c46ac1fb3cff913834090b99cd6ff57f98c3da33</originalsourceid><addsrcrecordid>eNqFkduK1TAYhYMozp7RB_BGeqMgTOufU5vg1TA4zsAGb_RKJKQ5YDZtsydpi-Nr-MK27s0oKHqVw_r-lUUWQs8wVBhw_XpXtb2pCICogFdAyAO0waxmJaUSP0QbkLUoQcj6BJ3mvAMAwiR-jE6w4JjKpt6g7zdDMYcxxUIPtgjrYV73YyjHqY9Jd4U2Y1iQ4HIRfRH6YPW3-Amfk7LQn2-nMMSvuguDO_9N439oq_3-Li1y9zegsC6FWS8vufwEPfK6y-7pcT1DH6_efri8Lrfv391cXmxLw1g9lg3lGqC13NcSZKOBSNNwy4VhtTbYt9R4LzEVlIGEVkpja-9546Uw1GpKz9Crg-8X3al9Cr1OdyrqoK4vtmq9AyaIYAJmvLAvD-w-xdvJ5VH1IRvXdXpwccqqlgQTieV_QSw5NII3C4gPoEkx5-T8fQQMaq1X7dRSr1rrVcDVUu8y8_xoPrW9s78mjn0uwIsjoLPRnU96MCHfcwRYI_HPlG8OnFv-dw4uqWyCG4yzITkzKhvDP2L8ACAmwpo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19507857</pqid></control><display><type>article</type><title>In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Moarbess, Georges ; Deleuze-Masquefa, Carine ; Bonnard, Vanessa ; Gayraud-Paniagua, Stéphanie ; Vidal, Jean-Rémi ; Bressolle, Françoise ; Pinguet, Frédéric ; Bonnet, Pierre-Antoine</creator><creatorcontrib>Moarbess, Georges ; Deleuze-Masquefa, Carine ; Bonnard, Vanessa ; Gayraud-Paniagua, Stéphanie ; Vidal, Jean-Rémi ; Bressolle, Françoise ; Pinguet, Frédéric ; Bonnet, Pierre-Antoine</creatorcontrib><description>EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity on human melanoma cell lines compared to fotemustine and imiquimod used as references. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments. Imidazoquinoxaline and pyrazoloquinoxaline derivatives, analogues of imiquimod, were synthesized, and their in vitro cytotoxic and pharmacodynamic activities were evaluated. In vitro cytotoxicity studies were assessed against melanoma (A375, M4Be, RPMI-7591), colon (LS174T), breast (MCF7), and lymphoma (Raji) human cancer cell lines. In vivo studies were carried out in M4Be xenografted athymic mice. EAPB0103, EAPB0201, EAPB0202, and EAPB0203 showed significant in vitro activities against A375 compared to fotemustine and imiquimod used as references. These compounds were 6–110 and 2–45 times more active than fotemustine and imiquimod, respectively. EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity. EAPB0203 has also a more potent cytotoxic activity than imiquimod and fotemustine in M4Be and RPMI-7591 and interesting cytotoxic activity in other tumor cell lines tested. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2008.05.022</identifier><identifier>PMID: 18513976</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Antineoplastic Agents ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biological and medical sciences ; Cell Line, Tumor ; Cell Survival ; Cell Survival - drug effects ; Chemical Sciences ; Databases, Factual ; Female ; General aspects ; Humans ; Imidazoles ; Imidazoles - chemistry ; Imidazoquinoxalines ; Imiquimod ; In vitro activity ; Medical sciences ; Medicinal Chemistry ; Melanoma ; Mice ; Mice, Nude ; Molecular Structure ; Pharmacodynamic evaluation ; Pharmacology. Drug treatments ; Pyrazoles ; Pyrazoles - chemistry ; Pyrazoloquinoxaline ; Quinoxalines ; Quinoxalines - chemical synthesis ; Quinoxalines - chemistry ; Quinoxalines - pharmacology ; Xenograft Model Antitumor Assays</subject><ispartof>Bioorganic &amp; medicinal chemistry, 2008-07, Vol.16 (13), p.6601-6610</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-735a00bd5f69097a029c75d58c46ac1fb3cff913834090b99cd6ff57f98c3da33</citedby><orcidid>0000-0001-8579-4150 ; 0000-0002-4086-5178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20479119$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18513976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04828480$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moarbess, Georges</creatorcontrib><creatorcontrib>Deleuze-Masquefa, Carine</creatorcontrib><creatorcontrib>Bonnard, Vanessa</creatorcontrib><creatorcontrib>Gayraud-Paniagua, Stéphanie</creatorcontrib><creatorcontrib>Vidal, Jean-Rémi</creatorcontrib><creatorcontrib>Bressolle, Françoise</creatorcontrib><creatorcontrib>Pinguet, Frédéric</creatorcontrib><creatorcontrib>Bonnet, Pierre-Antoine</creatorcontrib><title>In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives</title><title>Bioorganic &amp; medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity on human melanoma cell lines compared to fotemustine and imiquimod used as references. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments. Imidazoquinoxaline and pyrazoloquinoxaline derivatives, analogues of imiquimod, were synthesized, and their in vitro cytotoxic and pharmacodynamic activities were evaluated. In vitro cytotoxicity studies were assessed against melanoma (A375, M4Be, RPMI-7591), colon (LS174T), breast (MCF7), and lymphoma (Raji) human cancer cell lines. In vivo studies were carried out in M4Be xenografted athymic mice. EAPB0103, EAPB0201, EAPB0202, and EAPB0203 showed significant in vitro activities against A375 compared to fotemustine and imiquimod used as references. These compounds were 6–110 and 2–45 times more active than fotemustine and imiquimod, respectively. EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity. EAPB0203 has also a more potent cytotoxic activity than imiquimod and fotemustine in M4Be and RPMI-7591 and interesting cytotoxic activity in other tumor cell lines tested. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments.</description><subject>Animals</subject><subject>Antineoplastic Agents</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Cell Survival - drug effects</subject><subject>Chemical Sciences</subject><subject>Databases, Factual</subject><subject>Female</subject><subject>General aspects</subject><subject>Humans</subject><subject>Imidazoles</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoquinoxalines</subject><subject>Imiquimod</subject><subject>In vitro activity</subject><subject>Medical sciences</subject><subject>Medicinal Chemistry</subject><subject>Melanoma</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Structure</subject><subject>Pharmacodynamic evaluation</subject><subject>Pharmacology. Drug treatments</subject><subject>Pyrazoles</subject><subject>Pyrazoles - chemistry</subject><subject>Pyrazoloquinoxaline</subject><subject>Quinoxalines</subject><subject>Quinoxalines - chemical synthesis</subject><subject>Quinoxalines - chemistry</subject><subject>Quinoxalines - pharmacology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkduK1TAYhYMozp7RB_BGeqMgTOufU5vg1TA4zsAGb_RKJKQ5YDZtsydpi-Nr-MK27s0oKHqVw_r-lUUWQs8wVBhw_XpXtb2pCICogFdAyAO0waxmJaUSP0QbkLUoQcj6BJ3mvAMAwiR-jE6w4JjKpt6g7zdDMYcxxUIPtgjrYV73YyjHqY9Jd4U2Y1iQ4HIRfRH6YPW3-Amfk7LQn2-nMMSvuguDO_9N439oq_3-Li1y9zegsC6FWS8vufwEPfK6y-7pcT1DH6_efri8Lrfv391cXmxLw1g9lg3lGqC13NcSZKOBSNNwy4VhtTbYt9R4LzEVlIGEVkpja-9546Uw1GpKz9Crg-8X3al9Cr1OdyrqoK4vtmq9AyaIYAJmvLAvD-w-xdvJ5VH1IRvXdXpwccqqlgQTieV_QSw5NII3C4gPoEkx5-T8fQQMaq1X7dRSr1rrVcDVUu8y8_xoPrW9s78mjn0uwIsjoLPRnU96MCHfcwRYI_HPlG8OnFv-dw4uqWyCG4yzITkzKhvDP2L8ACAmwpo</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Moarbess, Georges</creator><creator>Deleuze-Masquefa, Carine</creator><creator>Bonnard, Vanessa</creator><creator>Gayraud-Paniagua, Stéphanie</creator><creator>Vidal, Jean-Rémi</creator><creator>Bressolle, Françoise</creator><creator>Pinguet, Frédéric</creator><creator>Bonnet, Pierre-Antoine</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8579-4150</orcidid><orcidid>https://orcid.org/0000-0002-4086-5178</orcidid></search><sort><creationdate>20080701</creationdate><title>In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives</title><author>Moarbess, Georges ; Deleuze-Masquefa, Carine ; Bonnard, Vanessa ; Gayraud-Paniagua, Stéphanie ; Vidal, Jean-Rémi ; Bressolle, Françoise ; Pinguet, Frédéric ; Bonnet, Pierre-Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-735a00bd5f69097a029c75d58c46ac1fb3cff913834090b99cd6ff57f98c3da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Antineoplastic Agents</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Cell Survival - drug effects</topic><topic>Chemical Sciences</topic><topic>Databases, Factual</topic><topic>Female</topic><topic>General aspects</topic><topic>Humans</topic><topic>Imidazoles</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoquinoxalines</topic><topic>Imiquimod</topic><topic>In vitro activity</topic><topic>Medical sciences</topic><topic>Medicinal Chemistry</topic><topic>Melanoma</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Structure</topic><topic>Pharmacodynamic evaluation</topic><topic>Pharmacology. Drug treatments</topic><topic>Pyrazoles</topic><topic>Pyrazoles - chemistry</topic><topic>Pyrazoloquinoxaline</topic><topic>Quinoxalines</topic><topic>Quinoxalines - chemical synthesis</topic><topic>Quinoxalines - chemistry</topic><topic>Quinoxalines - pharmacology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moarbess, Georges</creatorcontrib><creatorcontrib>Deleuze-Masquefa, Carine</creatorcontrib><creatorcontrib>Bonnard, Vanessa</creatorcontrib><creatorcontrib>Gayraud-Paniagua, Stéphanie</creatorcontrib><creatorcontrib>Vidal, Jean-Rémi</creatorcontrib><creatorcontrib>Bressolle, Françoise</creatorcontrib><creatorcontrib>Pinguet, Frédéric</creatorcontrib><creatorcontrib>Bonnet, Pierre-Antoine</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioorganic &amp; medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moarbess, Georges</au><au>Deleuze-Masquefa, Carine</au><au>Bonnard, Vanessa</au><au>Gayraud-Paniagua, Stéphanie</au><au>Vidal, Jean-Rémi</au><au>Bressolle, Françoise</au><au>Pinguet, Frédéric</au><au>Bonnet, Pierre-Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives</atitle><jtitle>Bioorganic &amp; medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>16</volume><issue>13</issue><spage>6601</spage><epage>6610</epage><pages>6601-6610</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity on human melanoma cell lines compared to fotemustine and imiquimod used as references. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments. Imidazoquinoxaline and pyrazoloquinoxaline derivatives, analogues of imiquimod, were synthesized, and their in vitro cytotoxic and pharmacodynamic activities were evaluated. In vitro cytotoxicity studies were assessed against melanoma (A375, M4Be, RPMI-7591), colon (LS174T), breast (MCF7), and lymphoma (Raji) human cancer cell lines. In vivo studies were carried out in M4Be xenografted athymic mice. EAPB0103, EAPB0201, EAPB0202, and EAPB0203 showed significant in vitro activities against A375 compared to fotemustine and imiquimod used as references. These compounds were 6–110 and 2–45 times more active than fotemustine and imiquimod, respectively. EAPB0203 bearing phenethyl as substituent at position 1 and methylamine at position 4 showed the highest activity. EAPB0203 has also a more potent cytotoxic activity than imiquimod and fotemustine in M4Be and RPMI-7591 and interesting cytotoxic activity in other tumor cell lines tested. In vivo, EAPB0203 treatment schedules caused a significant decrease in tumor size compared to vehicle control and fotemustine treatments.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18513976</pmid><doi>10.1016/j.bmc.2008.05.022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8579-4150</orcidid><orcidid>https://orcid.org/0000-0002-4086-5178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0968-0896
ispartof Bioorganic & medicinal chemistry, 2008-07, Vol.16 (13), p.6601-6610
issn 0968-0896
1464-3391
language eng
recordid cdi_hal_primary_oai_HAL_hal_04828480v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Animals
Antineoplastic Agents
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biological and medical sciences
Cell Line, Tumor
Cell Survival
Cell Survival - drug effects
Chemical Sciences
Databases, Factual
Female
General aspects
Humans
Imidazoles
Imidazoles - chemistry
Imidazoquinoxalines
Imiquimod
In vitro activity
Medical sciences
Medicinal Chemistry
Melanoma
Mice
Mice, Nude
Molecular Structure
Pharmacodynamic evaluation
Pharmacology. Drug treatments
Pyrazoles
Pyrazoles - chemistry
Pyrazoloquinoxaline
Quinoxalines
Quinoxalines - chemical synthesis
Quinoxalines - chemistry
Quinoxalines - pharmacology
Xenograft Model Antitumor Assays
title In vitro and in vivo anti-tumoral activities of imidazo[1,2- a]quinoxaline, imidazo[1,5- a]quinoxaline, and pyrazolo[1,5- a]quinoxaline derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20anti-tumoral%20activities%20of%20imidazo%5B1,2-%20a%5Dquinoxaline,%20imidazo%5B1,5-%20a%5Dquinoxaline,%20and%20pyrazolo%5B1,5-%20a%5Dquinoxaline%20derivatives&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=Moarbess,%20Georges&rft.date=2008-07-01&rft.volume=16&rft.issue=13&rft.spage=6601&rft.epage=6610&rft.pages=6601-6610&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2008.05.022&rft_dat=%3Cproquest_hal_p%3E69212919%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-735a00bd5f69097a029c75d58c46ac1fb3cff913834090b99cd6ff57f98c3da33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19507857&rft_id=info:pmid/18513976&rfr_iscdi=true