Loading…
Dynamical mean field theory with the density matrix renormalization group
A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limit...
Saved in:
Published in: | Physical review letters 2004-12, Vol.93 (24), p.246403.1-246403.4, Article 246403 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753 |
container_end_page | 246403.4 |
container_issue | 24 |
container_start_page | 246403.1 |
container_title | Physical review letters |
container_volume | 93 |
creator | GARCIA, Daniel J HALLBERG, Karen ROZENBERG, Marcelo J |
description | A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limited by the number of sites that can be considered. We obtain accurate estimates of the critical values of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the correlated metal. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized. |
doi_str_mv | 10.1103/PhysRevLett.93.246403 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04897280v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67254779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk5_gtIbBS8689UmuZT5scFAEb0OWZraSD9mkk7rr7djxXmVk5znvCc8AJwjOEUIkpvnovMvZrM0IUwFmWKaUkgOwBhBJmKGED0EYwgJigWEbAROvP-AECKc8mMwQkkqGCdsDBZ3Xa0qq1UZVUbVUW5NmUWhMI3roi8bim0dZab2NnRRpYKz35EzdeMqVdofFWxTR--uaden4ChXpTdnwzkBbw_3r7N5vHx6XMxul7GmmISY8Kz_Voqg6e-caa45JSJJqcIE0pwlOVZaYY2zhJM8QxnGBq1WgnNktm0yAde73EKVcu1spVwnG2Xl_HYpt2-QcsEwhxvUs1c7du2az9b4ICvrtSlLVZum9TJlOKGMiR5MdqB2jffO5H_JCMqtb_nPtxRE7nz3cxfDgnZVmWw_NQjugcsBUL6XnDtVa-v3XEp4QhAlv2M9ixg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67254779</pqid></control><display><type>article</type><title>Dynamical mean field theory with the density matrix renormalization group</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>GARCIA, Daniel J ; HALLBERG, Karen ; ROZENBERG, Marcelo J</creator><creatorcontrib>GARCIA, Daniel J ; HALLBERG, Karen ; ROZENBERG, Marcelo J</creatorcontrib><description>A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limited by the number of sites that can be considered. We obtain accurate estimates of the critical values of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the correlated metal. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.93.246403</identifier><identifier>PMID: 15697837</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Exact sciences and technology ; Physics ; Theories and models of many electron systems</subject><ispartof>Physical review letters, 2004-12, Vol.93 (24), p.246403.1-246403.4, Article 246403</ispartof><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753</citedby><cites>FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753</cites><orcidid>0000-0001-9161-0370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16385314$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15697837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04897280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>GARCIA, Daniel J</creatorcontrib><creatorcontrib>HALLBERG, Karen</creatorcontrib><creatorcontrib>ROZENBERG, Marcelo J</creatorcontrib><title>Dynamical mean field theory with the density matrix renormalization group</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limited by the number of sites that can be considered. We obtain accurate estimates of the critical values of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the correlated metal. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Theories and models of many electron systems</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobk5_gtIbBS8689UmuZT5scFAEb0OWZraSD9mkk7rr7djxXmVk5znvCc8AJwjOEUIkpvnovMvZrM0IUwFmWKaUkgOwBhBJmKGED0EYwgJigWEbAROvP-AECKc8mMwQkkqGCdsDBZ3Xa0qq1UZVUbVUW5NmUWhMI3roi8bim0dZab2NnRRpYKz35EzdeMqVdofFWxTR--uaden4ChXpTdnwzkBbw_3r7N5vHx6XMxul7GmmISY8Kz_Voqg6e-caa45JSJJqcIE0pwlOVZaYY2zhJM8QxnGBq1WgnNktm0yAde73EKVcu1spVwnG2Xl_HYpt2-QcsEwhxvUs1c7du2az9b4ICvrtSlLVZum9TJlOKGMiR5MdqB2jffO5H_JCMqtb_nPtxRE7nz3cxfDgnZVmWw_NQjugcsBUL6XnDtVa-v3XEp4QhAlv2M9ixg</recordid><startdate>20041210</startdate><enddate>20041210</enddate><creator>GARCIA, Daniel J</creator><creator>HALLBERG, Karen</creator><creator>ROZENBERG, Marcelo J</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9161-0370</orcidid></search><sort><creationdate>20041210</creationdate><title>Dynamical mean field theory with the density matrix renormalization group</title><author>GARCIA, Daniel J ; HALLBERG, Karen ; ROZENBERG, Marcelo J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Theories and models of many electron systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GARCIA, Daniel J</creatorcontrib><creatorcontrib>HALLBERG, Karen</creatorcontrib><creatorcontrib>ROZENBERG, Marcelo J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GARCIA, Daniel J</au><au>HALLBERG, Karen</au><au>ROZENBERG, Marcelo J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical mean field theory with the density matrix renormalization group</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2004-12-10</date><risdate>2004</risdate><volume>93</volume><issue>24</issue><spage>246403.1</spage><epage>246403.4</epage><pages>246403.1-246403.4</pages><artnum>246403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>A new numerical method for the solution of the dynamical mean field theory's self-consistent equations is introduced. The method uses the density matrix renormalization group technique to solve the associated impurity problem. The new algorithm makes no a priori approximations and is only limited by the number of sites that can be considered. We obtain accurate estimates of the critical values of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the correlated metal. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>15697837</pmid><doi>10.1103/PhysRevLett.93.246403</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9161-0370</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2004-12, Vol.93 (24), p.246403.1-246403.4, Article 246403 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04897280v1 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron states Exact sciences and technology Physics Theories and models of many electron systems |
title | Dynamical mean field theory with the density matrix renormalization group |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20mean%20field%20theory%20with%20the%20density%20matrix%20renormalization%20group&rft.jtitle=Physical%20review%20letters&rft.au=GARCIA,%20Daniel%20J&rft.date=2004-12-10&rft.volume=93&rft.issue=24&rft.spage=246403.1&rft.epage=246403.4&rft.pages=246403.1-246403.4&rft.artnum=246403&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.93.246403&rft_dat=%3Cproquest_hal_p%3E67254779%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-38d003610ec4287c8c8439564a2304f75f2aca2c2d583fd1d22e1bb9881e4f753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67254779&rft_id=info:pmid/15697837&rfr_iscdi=true |