Loading…

Simulating the blast wave from detonation of a charge using a balloon of compressed air

This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-s...

Full description

Saved in:
Bibliographic Details
Published in:Shock waves 2018, Vol.28 (4), p.641-652
Main Authors: Blanc, L., Santana Herrera, S., Hanus, J. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3
cites cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3
container_end_page 652
container_issue 4
container_start_page 641
container_title Shock waves
container_volume 28
creator Blanc, L.
Santana Herrera, S.
Hanus, J. L.
description This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.
doi_str_mv 10.1007/s00193-017-0774-0
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ineris_01853361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049994742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWH8ewF3ArdH8TibLUtQKBRcWXIbMJGmnzExqMlPx7U0Z0ZWrb3HPuXxcAG4IvicYy4eEMVEMYSIRlpIjfAJmhDOKKBHsFMywYiUitJTn4CKlXaZlIeUMvL813diaoek3cNg6WLUmDfDTHBz0MXTQuiH0OQ49DB4aWG9N3Dg4pqNgYGXaNkxZHbp9dCk5C00Tr8CZN21y1z_3EqyfHteLJVq9Pr8s5itUM0UHpJRznlREcsG4Na6w3JdVKRTG3HthK1VwWouCytIzb4WyrlCF8lVprWCeXYK7qXZrWr2PTWfilw6m0cv5Sje9i03SmJSCsYIcSMZvJ3wfw8fo0qB3YYx9flBTzJVSXHKaKTJRdQwpRed_mwnWx7X1tHZulvq4tsbZoZOTMttvXPxr_l_6BgIVgaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049994742</pqid></control><display><type>article</type><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><source>Springer Link</source><creator>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</creator><creatorcontrib>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</creatorcontrib><description>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-017-0774-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Compressed air ; Computer simulation ; Condensed Matter Physics ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Environmental Engineering ; Environmental Sciences ; Equations of state ; Equivalence ; Explosions ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Mathematical models ; Numerical methods ; Original Article ; Overpressure ; Steady state models ; Thermodynamics</subject><ispartof>Shock waves, 2018, Vol.28 (4), p.641-652</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</citedby><cites>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</cites><orcidid>0000-0001-7325-2178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-01853361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Santana Herrera, S.</creatorcontrib><creatorcontrib>Hanus, J. L.</creatorcontrib><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</description><subject>Acoustics</subject><subject>Compressed air</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Equations of state</subject><subject>Equivalence</subject><subject>Explosions</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Steady state models</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEYRYMoWH8ewF3ArdH8TibLUtQKBRcWXIbMJGmnzExqMlPx7U0Z0ZWrb3HPuXxcAG4IvicYy4eEMVEMYSIRlpIjfAJmhDOKKBHsFMywYiUitJTn4CKlXaZlIeUMvL813diaoek3cNg6WLUmDfDTHBz0MXTQuiH0OQ49DB4aWG9N3Dg4pqNgYGXaNkxZHbp9dCk5C00Tr8CZN21y1z_3EqyfHteLJVq9Pr8s5itUM0UHpJRznlREcsG4Na6w3JdVKRTG3HthK1VwWouCytIzb4WyrlCF8lVprWCeXYK7qXZrWr2PTWfilw6m0cv5Sje9i03SmJSCsYIcSMZvJ3wfw8fo0qB3YYx9flBTzJVSXHKaKTJRdQwpRed_mwnWx7X1tHZulvq4tsbZoZOTMttvXPxr_l_6BgIVgaQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Blanc, L.</creator><creator>Santana Herrera, S.</creator><creator>Hanus, J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7325-2178</orcidid></search><sort><creationdate>2018</creationdate><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><author>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Compressed air</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Equations of state</topic><topic>Equivalence</topic><topic>Explosions</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Steady state models</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Santana Herrera, S.</creatorcontrib><creatorcontrib>Hanus, J. L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanc, L.</au><au>Santana Herrera, S.</au><au>Hanus, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the blast wave from detonation of a charge using a balloon of compressed air</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-017-0774-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7325-2178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2018, Vol.28 (4), p.641-652
issn 0938-1287
1432-2153
language eng
recordid cdi_hal_primary_oai_HAL_ineris_01853361v1
source Springer Link
subjects Acoustics
Compressed air
Computer simulation
Condensed Matter Physics
Detonation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Environmental Engineering
Environmental Sciences
Equations of state
Equivalence
Explosions
Fluid- and Aerodynamics
Heat and Mass Transfer
Mathematical models
Numerical methods
Original Article
Overpressure
Steady state models
Thermodynamics
title Simulating the blast wave from detonation of a charge using a balloon of compressed air
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20blast%20wave%20from%20detonation%20of%20a%20charge%20using%20a%20balloon%20of%20compressed%20air&rft.jtitle=Shock%20waves&rft.au=Blanc,%20L.&rft.date=2018&rft.volume=28&rft.issue=4&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-017-0774-0&rft_dat=%3Cproquest_hal_p%3E2049994742%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049994742&rft_id=info:pmid/&rfr_iscdi=true