Loading…
Simulating the blast wave from detonation of a charge using a balloon of compressed air
This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-s...
Saved in:
Published in: | Shock waves 2018, Vol.28 (4), p.641-652 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3 |
container_end_page | 652 |
container_issue | 4 |
container_start_page | 641 |
container_title | Shock waves |
container_volume | 28 |
creator | Blanc, L. Santana Herrera, S. Hanus, J. L. |
description | This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass. |
doi_str_mv | 10.1007/s00193-017-0774-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ineris_01853361v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049994742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWH8ewF3ArdH8TibLUtQKBRcWXIbMJGmnzExqMlPx7U0Z0ZWrb3HPuXxcAG4IvicYy4eEMVEMYSIRlpIjfAJmhDOKKBHsFMywYiUitJTn4CKlXaZlIeUMvL813diaoek3cNg6WLUmDfDTHBz0MXTQuiH0OQ49DB4aWG9N3Dg4pqNgYGXaNkxZHbp9dCk5C00Tr8CZN21y1z_3EqyfHteLJVq9Pr8s5itUM0UHpJRznlREcsG4Na6w3JdVKRTG3HthK1VwWouCytIzb4WyrlCF8lVprWCeXYK7qXZrWr2PTWfilw6m0cv5Sje9i03SmJSCsYIcSMZvJ3wfw8fo0qB3YYx9flBTzJVSXHKaKTJRdQwpRed_mwnWx7X1tHZulvq4tsbZoZOTMttvXPxr_l_6BgIVgaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049994742</pqid></control><display><type>article</type><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><source>Springer Link</source><creator>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</creator><creatorcontrib>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</creatorcontrib><description>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-017-0774-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Compressed air ; Computer simulation ; Condensed Matter Physics ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Environmental Engineering ; Environmental Sciences ; Equations of state ; Equivalence ; Explosions ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Mathematical models ; Numerical methods ; Original Article ; Overpressure ; Steady state models ; Thermodynamics</subject><ispartof>Shock waves, 2018, Vol.28 (4), p.641-652</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</citedby><cites>FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</cites><orcidid>0000-0001-7325-2178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://ineris.hal.science/ineris-01853361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Santana Herrera, S.</creatorcontrib><creatorcontrib>Hanus, J. L.</creatorcontrib><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</description><subject>Acoustics</subject><subject>Compressed air</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Equations of state</subject><subject>Equivalence</subject><subject>Explosions</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Steady state models</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEYRYMoWH8ewF3ArdH8TibLUtQKBRcWXIbMJGmnzExqMlPx7U0Z0ZWrb3HPuXxcAG4IvicYy4eEMVEMYSIRlpIjfAJmhDOKKBHsFMywYiUitJTn4CKlXaZlIeUMvL813diaoek3cNg6WLUmDfDTHBz0MXTQuiH0OQ49DB4aWG9N3Dg4pqNgYGXaNkxZHbp9dCk5C00Tr8CZN21y1z_3EqyfHteLJVq9Pr8s5itUM0UHpJRznlREcsG4Na6w3JdVKRTG3HthK1VwWouCytIzb4WyrlCF8lVprWCeXYK7qXZrWr2PTWfilw6m0cv5Sje9i03SmJSCsYIcSMZvJ3wfw8fo0qB3YYx9flBTzJVSXHKaKTJRdQwpRed_mwnWx7X1tHZulvq4tsbZoZOTMttvXPxr_l_6BgIVgaQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Blanc, L.</creator><creator>Santana Herrera, S.</creator><creator>Hanus, J. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7325-2178</orcidid></search><sort><creationdate>2018</creationdate><title>Simulating the blast wave from detonation of a charge using a balloon of compressed air</title><author>Blanc, L. ; Santana Herrera, S. ; Hanus, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Compressed air</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Equations of state</topic><topic>Equivalence</topic><topic>Explosions</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Steady state models</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanc, L.</creatorcontrib><creatorcontrib>Santana Herrera, S.</creatorcontrib><creatorcontrib>Hanus, J. L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanc, L.</au><au>Santana Herrera, S.</au><au>Hanus, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the blast wave from detonation of a charge using a balloon of compressed air</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>641</spage><epage>652</epage><pages>641-652</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones–Wilkins–Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane–oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones–Wilkins–Lee model and a TNT equivalent mass.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-017-0774-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7325-2178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1287 |
ispartof | Shock waves, 2018, Vol.28 (4), p.641-652 |
issn | 0938-1287 1432-2153 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_ineris_01853361v1 |
source | Springer Link |
subjects | Acoustics Compressed air Computer simulation Condensed Matter Physics Detonation Engineering Engineering Fluid Dynamics Engineering Thermodynamics Environmental Engineering Environmental Sciences Equations of state Equivalence Explosions Fluid- and Aerodynamics Heat and Mass Transfer Mathematical models Numerical methods Original Article Overpressure Steady state models Thermodynamics |
title | Simulating the blast wave from detonation of a charge using a balloon of compressed air |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20blast%20wave%20from%20detonation%20of%20a%20charge%20using%20a%20balloon%20of%20compressed%20air&rft.jtitle=Shock%20waves&rft.au=Blanc,%20L.&rft.date=2018&rft.volume=28&rft.issue=4&rft.spage=641&rft.epage=652&rft.pages=641-652&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-017-0774-0&rft_dat=%3Cproquest_hal_p%3E2049994742%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-99eef1b174534dae6d4f8b859004ff5db9642c56278f3fd59de6969fb8dd53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2049994742&rft_id=info:pmid/&rfr_iscdi=true |