Loading…

Knowledge recovery for continental-scale mineral exploration by neural networks

This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metall...

Full description

Saved in:
Bibliographic Details
Published in:Natural resources research (New York, N.Y.) N.Y.), 2003-09, Vol.12 (3), p.173-181
Main Authors: BOUGRAIN, Laurent, GONZALEZ, Maria, BOUCHOT, Vincent, CASSARD, Daniel, LIPS, Andor L. W, ALEXANDRE, Frédéric, STEIN, Gilbert
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3
cites
container_end_page 181
container_issue 3
container_start_page 173
container_title Natural resources research (New York, N.Y.)
container_volume 12
creator BOUGRAIN, Laurent
GONZALEZ, Maria
BOUCHOT, Vincent
CASSARD, Daniel
LIPS, Andor L. W
ALEXANDRE, Frédéric
STEIN, Gilbert
description This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.
doi_str_mv 10.1023/A:1025123920475
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00099699v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27922348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEEmNw5loJwQUVmo82CbdpAoaYtAucqzR1oCNLRtJt7N-TaRMHTq9tPbL92ghd4uIOF4Tejx6SlJhQSQrGyyM0wCWnuZACH-9iUuScUXmKzmKcF0XBqSgHaPbq_MZC-wFZAO3XELaZ8SHT3vWdA9crm0etLGSLlAZlM_hZWh9U33mXNdvMwWpXddBvfPiK5-jEKBvh4qBD9P70-Dae5NPZ88t4NM0VqUifay40ZaUxSreaVxXlvIW2lVWjDKZM4KasStZoIZk2rSTAK960QmJDtS5KoEN0u-_7qWy9DN1ChW3tVVdPRtO6c6FTdfIoZSXlGif6Zk8vg_9eQezrRRc1WKsc-FWsCZeEpLEJvPoHzv0quOSkJhILigURLFHXB0rtbmOCcrqLf2vg9AXGCKa_Oed6-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918318284</pqid></control><display><type>article</type><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><source>Springer Nature</source><creator>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</creator><creatorcontrib>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</creatorcontrib><description>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1023/A:1025123920475</identifier><identifier>CODEN: NRREFQ</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Artificial neural networks ; Brain damage ; Brain injury ; Computer Science ; Deposits ; Digital data ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemical exploration, methodology, general ; Geographic information systems ; Heavy metals ; Information systems ; Metallic and non-metallic deposits ; Mineral deposits ; Mineral exploration ; Multilayer perceptrons ; Neural networks ; Other ; Remote sensing</subject><ispartof>Natural resources research (New York, N.Y.), 2003-09, Vol.12 (3), p.173-181</ispartof><rights>2003 INIST-CNRS</rights><rights>International Association for Mathematical Geology 2003.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</citedby><orcidid>0000-0002-6113-1878 ; 0000-0001-6794-0505 ; 0000-0002-7167-6978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15124421$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00099699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUGRAIN, Laurent</creatorcontrib><creatorcontrib>GONZALEZ, Maria</creatorcontrib><creatorcontrib>BOUCHOT, Vincent</creatorcontrib><creatorcontrib>CASSARD, Daniel</creatorcontrib><creatorcontrib>LIPS, Andor L. W</creatorcontrib><creatorcontrib>ALEXANDRE, Frédéric</creatorcontrib><creatorcontrib>STEIN, Gilbert</creatorcontrib><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><title>Natural resources research (New York, N.Y.)</title><description>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Computer Science</subject><subject>Deposits</subject><subject>Digital data</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemical exploration, methodology, general</subject><subject>Geographic information systems</subject><subject>Heavy metals</subject><subject>Information systems</subject><subject>Metallic and non-metallic deposits</subject><subject>Mineral deposits</subject><subject>Mineral exploration</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Other</subject><subject>Remote sensing</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhiMEEmNw5loJwQUVmo82CbdpAoaYtAucqzR1oCNLRtJt7N-TaRMHTq9tPbL92ghd4uIOF4Tejx6SlJhQSQrGyyM0wCWnuZACH-9iUuScUXmKzmKcF0XBqSgHaPbq_MZC-wFZAO3XELaZ8SHT3vWdA9crm0etLGSLlAZlM_hZWh9U33mXNdvMwWpXddBvfPiK5-jEKBvh4qBD9P70-Dae5NPZ88t4NM0VqUifay40ZaUxSreaVxXlvIW2lVWjDKZM4KasStZoIZk2rSTAK960QmJDtS5KoEN0u-_7qWy9DN1ChW3tVVdPRtO6c6FTdfIoZSXlGif6Zk8vg_9eQezrRRc1WKsc-FWsCZeEpLEJvPoHzv0quOSkJhILigURLFHXB0rtbmOCcrqLf2vg9AXGCKa_Oed6-w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>BOUGRAIN, Laurent</creator><creator>GONZALEZ, Maria</creator><creator>BOUCHOT, Vincent</creator><creator>CASSARD, Daniel</creator><creator>LIPS, Andor L. W</creator><creator>ALEXANDRE, Frédéric</creator><creator>STEIN, Gilbert</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6113-1878</orcidid><orcidid>https://orcid.org/0000-0001-6794-0505</orcidid><orcidid>https://orcid.org/0000-0002-7167-6978</orcidid></search><sort><creationdate>20030901</creationdate><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><author>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Computer Science</topic><topic>Deposits</topic><topic>Digital data</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemical exploration, methodology, general</topic><topic>Geographic information systems</topic><topic>Heavy metals</topic><topic>Information systems</topic><topic>Metallic and non-metallic deposits</topic><topic>Mineral deposits</topic><topic>Mineral exploration</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Other</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUGRAIN, Laurent</creatorcontrib><creatorcontrib>GONZALEZ, Maria</creatorcontrib><creatorcontrib>BOUCHOT, Vincent</creatorcontrib><creatorcontrib>CASSARD, Daniel</creatorcontrib><creatorcontrib>LIPS, Andor L. W</creatorcontrib><creatorcontrib>ALEXANDRE, Frédéric</creatorcontrib><creatorcontrib>STEIN, Gilbert</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUGRAIN, Laurent</au><au>GONZALEZ, Maria</au><au>BOUCHOT, Vincent</au><au>CASSARD, Daniel</au><au>LIPS, Andor L. W</au><au>ALEXANDRE, Frédéric</au><au>STEIN, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge recovery for continental-scale mineral exploration by neural networks</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>12</volume><issue>3</issue><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><coden>NRREFQ</coden><abstract>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1025123920475</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6113-1878</orcidid><orcidid>https://orcid.org/0000-0001-6794-0505</orcidid><orcidid>https://orcid.org/0000-0002-7167-6978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-7439
ispartof Natural resources research (New York, N.Y.), 2003-09, Vol.12 (3), p.173-181
issn 1520-7439
1573-8981
language eng
recordid cdi_hal_primary_oai_HAL_inria_00099699v1
source Springer Nature
subjects Algorithms
Artificial neural networks
Brain damage
Brain injury
Computer Science
Deposits
Digital data
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochemical exploration, methodology, general
Geographic information systems
Heavy metals
Information systems
Metallic and non-metallic deposits
Mineral deposits
Mineral exploration
Multilayer perceptrons
Neural networks
Other
Remote sensing
title Knowledge recovery for continental-scale mineral exploration by neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20recovery%20for%20continental-scale%20mineral%20exploration%20by%20neural%20networks&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=BOUGRAIN,%20Laurent&rft.date=2003-09-01&rft.volume=12&rft.issue=3&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=1520-7439&rft.eissn=1573-8981&rft.coden=NRREFQ&rft_id=info:doi/10.1023/A:1025123920475&rft_dat=%3Cproquest_hal_p%3E27922348%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918318284&rft_id=info:pmid/&rfr_iscdi=true