Loading…
Knowledge recovery for continental-scale mineral exploration by neural networks
This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metall...
Saved in:
Published in: | Natural resources research (New York, N.Y.) N.Y.), 2003-09, Vol.12 (3), p.173-181 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3 |
---|---|
cites | |
container_end_page | 181 |
container_issue | 3 |
container_start_page | 173 |
container_title | Natural resources research (New York, N.Y.) |
container_volume | 12 |
creator | BOUGRAIN, Laurent GONZALEZ, Maria BOUCHOT, Vincent CASSARD, Daniel LIPS, Andor L. W ALEXANDRE, Frédéric STEIN, Gilbert |
description | This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems. |
doi_str_mv | 10.1023/A:1025123920475 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00099699v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27922348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEEmNw5loJwQUVmo82CbdpAoaYtAucqzR1oCNLRtJt7N-TaRMHTq9tPbL92ghd4uIOF4Tejx6SlJhQSQrGyyM0wCWnuZACH-9iUuScUXmKzmKcF0XBqSgHaPbq_MZC-wFZAO3XELaZ8SHT3vWdA9crm0etLGSLlAZlM_hZWh9U33mXNdvMwWpXddBvfPiK5-jEKBvh4qBD9P70-Dae5NPZ88t4NM0VqUifay40ZaUxSreaVxXlvIW2lVWjDKZM4KasStZoIZk2rSTAK960QmJDtS5KoEN0u-_7qWy9DN1ChW3tVVdPRtO6c6FTdfIoZSXlGif6Zk8vg_9eQezrRRc1WKsc-FWsCZeEpLEJvPoHzv0quOSkJhILigURLFHXB0rtbmOCcrqLf2vg9AXGCKa_Oed6-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918318284</pqid></control><display><type>article</type><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><source>Springer Nature</source><creator>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</creator><creatorcontrib>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</creatorcontrib><description>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</description><identifier>ISSN: 1520-7439</identifier><identifier>EISSN: 1573-8981</identifier><identifier>DOI: 10.1023/A:1025123920475</identifier><identifier>CODEN: NRREFQ</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Artificial neural networks ; Brain damage ; Brain injury ; Computer Science ; Deposits ; Digital data ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemical exploration, methodology, general ; Geographic information systems ; Heavy metals ; Information systems ; Metallic and non-metallic deposits ; Mineral deposits ; Mineral exploration ; Multilayer perceptrons ; Neural networks ; Other ; Remote sensing</subject><ispartof>Natural resources research (New York, N.Y.), 2003-09, Vol.12 (3), p.173-181</ispartof><rights>2003 INIST-CNRS</rights><rights>International Association for Mathematical Geology 2003.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</citedby><orcidid>0000-0002-6113-1878 ; 0000-0001-6794-0505 ; 0000-0002-7167-6978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15124421$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00099699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOUGRAIN, Laurent</creatorcontrib><creatorcontrib>GONZALEZ, Maria</creatorcontrib><creatorcontrib>BOUCHOT, Vincent</creatorcontrib><creatorcontrib>CASSARD, Daniel</creatorcontrib><creatorcontrib>LIPS, Andor L. W</creatorcontrib><creatorcontrib>ALEXANDRE, Frédéric</creatorcontrib><creatorcontrib>STEIN, Gilbert</creatorcontrib><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><title>Natural resources research (New York, N.Y.)</title><description>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Computer Science</subject><subject>Deposits</subject><subject>Digital data</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemical exploration, methodology, general</subject><subject>Geographic information systems</subject><subject>Heavy metals</subject><subject>Information systems</subject><subject>Metallic and non-metallic deposits</subject><subject>Mineral deposits</subject><subject>Mineral exploration</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Other</subject><subject>Remote sensing</subject><issn>1520-7439</issn><issn>1573-8981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhiMEEmNw5loJwQUVmo82CbdpAoaYtAucqzR1oCNLRtJt7N-TaRMHTq9tPbL92ghd4uIOF4Tejx6SlJhQSQrGyyM0wCWnuZACH-9iUuScUXmKzmKcF0XBqSgHaPbq_MZC-wFZAO3XELaZ8SHT3vWdA9crm0etLGSLlAZlM_hZWh9U33mXNdvMwWpXddBvfPiK5-jEKBvh4qBD9P70-Dae5NPZ88t4NM0VqUifay40ZaUxSreaVxXlvIW2lVWjDKZM4KasStZoIZk2rSTAK960QmJDtS5KoEN0u-_7qWy9DN1ChW3tVVdPRtO6c6FTdfIoZSXlGif6Zk8vg_9eQezrRRc1WKsc-FWsCZeEpLEJvPoHzv0quOSkJhILigURLFHXB0rtbmOCcrqLf2vg9AXGCKa_Oed6-w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>BOUGRAIN, Laurent</creator><creator>GONZALEZ, Maria</creator><creator>BOUCHOT, Vincent</creator><creator>CASSARD, Daniel</creator><creator>LIPS, Andor L. W</creator><creator>ALEXANDRE, Frédéric</creator><creator>STEIN, Gilbert</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6113-1878</orcidid><orcidid>https://orcid.org/0000-0001-6794-0505</orcidid><orcidid>https://orcid.org/0000-0002-7167-6978</orcidid></search><sort><creationdate>20030901</creationdate><title>Knowledge recovery for continental-scale mineral exploration by neural networks</title><author>BOUGRAIN, Laurent ; GONZALEZ, Maria ; BOUCHOT, Vincent ; CASSARD, Daniel ; LIPS, Andor L. W ; ALEXANDRE, Frédéric ; STEIN, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Computer Science</topic><topic>Deposits</topic><topic>Digital data</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemical exploration, methodology, general</topic><topic>Geographic information systems</topic><topic>Heavy metals</topic><topic>Information systems</topic><topic>Metallic and non-metallic deposits</topic><topic>Mineral deposits</topic><topic>Mineral exploration</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Other</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOUGRAIN, Laurent</creatorcontrib><creatorcontrib>GONZALEZ, Maria</creatorcontrib><creatorcontrib>BOUCHOT, Vincent</creatorcontrib><creatorcontrib>CASSARD, Daniel</creatorcontrib><creatorcontrib>LIPS, Andor L. W</creatorcontrib><creatorcontrib>ALEXANDRE, Frédéric</creatorcontrib><creatorcontrib>STEIN, Gilbert</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Natural resources research (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOUGRAIN, Laurent</au><au>GONZALEZ, Maria</au><au>BOUCHOT, Vincent</au><au>CASSARD, Daniel</au><au>LIPS, Andor L. W</au><au>ALEXANDRE, Frédéric</au><au>STEIN, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge recovery for continental-scale mineral exploration by neural networks</atitle><jtitle>Natural resources research (New York, N.Y.)</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>12</volume><issue>3</issue><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>1520-7439</issn><eissn>1573-8981</eissn><coden>NRREFQ</coden><abstract>This study is concerned with understanding of the formation of ore deposits (precious and base metals) and contributes to the exploration and discovery of new occurrences using artificial neural networks. From the different digital data sets available in BRGM's GIS Andes (a comprehensive metallogenic continental-scale Geographic Information System) 25 attributes are identified as known factors or potential factors controlling the formation of gold deposits in the Andes Cordillera. Various multilayer perceptrons were applied to discriminate possible ore deposits from barren sites. Subsequently, because artificial neural networks can be used to construct a revised model for knowledge extraction, the optimal brain damage algorithm by LeCun was applied to order the 25 attributes by their relevance to the classification. The approach demonstrates how neural networks can be used efficiently in a practical problem of mineral exploration, where general domain knowledge alone is insufficient to satisfactorily model the potential controls on deposit formation using the available information in continent-scale information systems.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1025123920475</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6113-1878</orcidid><orcidid>https://orcid.org/0000-0001-6794-0505</orcidid><orcidid>https://orcid.org/0000-0002-7167-6978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-7439 |
ispartof | Natural resources research (New York, N.Y.), 2003-09, Vol.12 (3), p.173-181 |
issn | 1520-7439 1573-8981 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00099699v1 |
source | Springer Nature |
subjects | Algorithms Artificial neural networks Brain damage Brain injury Computer Science Deposits Digital data Earth sciences Earth, ocean, space Exact sciences and technology Geochemical exploration, methodology, general Geographic information systems Heavy metals Information systems Metallic and non-metallic deposits Mineral deposits Mineral exploration Multilayer perceptrons Neural networks Other Remote sensing |
title | Knowledge recovery for continental-scale mineral exploration by neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20recovery%20for%20continental-scale%20mineral%20exploration%20by%20neural%20networks&rft.jtitle=Natural%20resources%20research%20(New%20York,%20N.Y.)&rft.au=BOUGRAIN,%20Laurent&rft.date=2003-09-01&rft.volume=12&rft.issue=3&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=1520-7439&rft.eissn=1573-8981&rft.coden=NRREFQ&rft_id=info:doi/10.1023/A:1025123920475&rft_dat=%3Cproquest_hal_p%3E27922348%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a262t-c78c345ffacdc766377dedd96baf13481b5654bc894cfd92e767bd891f3cc05e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918318284&rft_id=info:pmid/&rfr_iscdi=true |