Loading…

Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity

This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals stored in the deformation of an -scaling of a stochastic lattice Γ -converge to a continuous energy functio...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 2011-06, Vol.200 (3), p.881-943
Main Authors: Alicandro, Roberto, Cicalese, Marco, Gloria, Antoine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3
cites cdi_FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3
container_end_page 943
container_issue 3
container_start_page 881
container_title Archive for rational mechanics and analysis
container_volume 200
creator Alicandro, Roberto
Cicalese, Marco
Gloria, Antoine
description This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals stored in the deformation of an -scaling of a stochastic lattice Γ -converge to a continuous energy functional when goes to zero. In particular, the limiting energy functional is of integral type, and deterministic if the lattice is ergodic. We also generalize, to systems and nonlinear settings, well-known results on stochastic homogenization of discrete elliptic equations. As an application of the main result, we prove the convergence of a discrete model for rubber towards the nonlinear theory of continuum mechanics. We finally address some mechanical properties of the limiting models, such as frame-invariance, isotropy and natural states.
doi_str_mv 10.1007/s00205-010-0378-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00437765v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348911821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMouH78Ad6K4Emqk6RN2uOiqyssCn6cw2ybrpGa1CQr7H9v1oqePA3D_N7jDY-QEwoXFEBeBgAGZQ4UcuCyyuUOmdCCsxyE5LtkAgA8r0sm98lBCG_blXExIeHORr3y2GePevA6aBsxGmfTGtZ9DFnnfDaz2q-MDtm17ozVbZbuT9E1rxiiabIFxjTSGW2bTYehN83oEV1272yfJJhM-m_axM0R2euwD_r4Zx6Sl5vZ89U8Xzzc3l1NF3nDKxrzCqGu6LIoNIj0YlVTKIoOJZOsBF6KUraUdi0KbGpRLNO3spXLqm25AOTY8UNyPvq-Yq8Gb97Rb5RDo-bThTLWG1QASSVF-UkTfTrSg3cfax2ienNrb1NAVQlRS0m5TBAdoca7ELzufn0pqG0RaixCpSLUtgi11Zz9GGNosO882saEXyErGKTELHFs5EI62ZX2fwH-N_8CLI-Xhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866977137</pqid></control><display><type>article</type><title>Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity</title><source>Springer Nature</source><creator>Alicandro, Roberto ; Cicalese, Marco ; Gloria, Antoine</creator><creatorcontrib>Alicandro, Roberto ; Cicalese, Marco ; Gloria, Antoine</creatorcontrib><description>This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals stored in the deformation of an -scaling of a stochastic lattice Γ -converge to a continuous energy functional when goes to zero. In particular, the limiting energy functional is of integral type, and deterministic if the lattice is ergodic. We also generalize, to systems and nonlinear settings, well-known results on stochastic homogenization of discrete elliptic equations. As an application of the main result, we prove the convergence of a discrete model for rubber towards the nonlinear theory of continuum mechanics. We finally address some mechanical properties of the limiting models, such as frame-invariance, isotropy and natural states.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-010-0378-7</identifier><identifier>CODEN: AVRMAW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical Mechanics ; Complex Systems ; Exact sciences and technology ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical and Computational Physics ; Mathematics ; Numerical Analysis ; Physics ; Physics and Astronomy ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2011-06, Vol.200 (3), p.881-943</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3</citedby><cites>FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3</cites><orcidid>0000-0001-7502-606X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24203602$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00437765$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alicandro, Roberto</creatorcontrib><creatorcontrib>Cicalese, Marco</creatorcontrib><creatorcontrib>Gloria, Antoine</creatorcontrib><title>Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals stored in the deformation of an -scaling of a stochastic lattice Γ -converge to a continuous energy functional when goes to zero. In particular, the limiting energy functional is of integral type, and deterministic if the lattice is ergodic. We also generalize, to systems and nonlinear settings, well-known results on stochastic homogenization of discrete elliptic equations. As an application of the main result, we prove the convergence of a discrete model for rubber towards the nonlinear theory of continuum mechanics. We finally address some mechanical properties of the limiting models, such as frame-invariance, isotropy and natural states.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LxDAQxYMouH78Ad6K4Emqk6RN2uOiqyssCn6cw2ybrpGa1CQr7H9v1oqePA3D_N7jDY-QEwoXFEBeBgAGZQ4UcuCyyuUOmdCCsxyE5LtkAgA8r0sm98lBCG_blXExIeHORr3y2GePevA6aBsxGmfTGtZ9DFnnfDaz2q-MDtm17ozVbZbuT9E1rxiiabIFxjTSGW2bTYehN83oEV1272yfJJhM-m_axM0R2euwD_r4Zx6Sl5vZ89U8Xzzc3l1NF3nDKxrzCqGu6LIoNIj0YlVTKIoOJZOsBF6KUraUdi0KbGpRLNO3spXLqm25AOTY8UNyPvq-Yq8Gb97Rb5RDo-bThTLWG1QASSVF-UkTfTrSg3cfax2ienNrb1NAVQlRS0m5TBAdoca7ELzufn0pqG0RaixCpSLUtgi11Zz9GGNosO882saEXyErGKTELHFs5EI62ZX2fwH-N_8CLI-Xhw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Alicandro, Roberto</creator><creator>Cicalese, Marco</creator><creator>Gloria, Antoine</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7502-606X</orcidid></search><sort><creationdate>20110601</creationdate><title>Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity</title><author>Alicandro, Roberto ; Cicalese, Marco ; Gloria, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alicandro, Roberto</creatorcontrib><creatorcontrib>Cicalese, Marco</creatorcontrib><creatorcontrib>Gloria, Antoine</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alicandro, Roberto</au><au>Cicalese, Marco</au><au>Gloria, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>200</volume><issue>3</issue><spage>881</spage><epage>943</epage><pages>881-943</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><coden>AVRMAW</coden><abstract>This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals stored in the deformation of an -scaling of a stochastic lattice Γ -converge to a continuous energy functional when goes to zero. In particular, the limiting energy functional is of integral type, and deterministic if the lattice is ergodic. We also generalize, to systems and nonlinear settings, well-known results on stochastic homogenization of discrete elliptic equations. As an application of the main result, we prove the convergence of a discrete model for rubber towards the nonlinear theory of continuum mechanics. We finally address some mechanical properties of the limiting models, such as frame-invariance, isotropy and natural states.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00205-010-0378-7</doi><tpages>63</tpages><orcidid>https://orcid.org/0000-0001-7502-606X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2011-06, Vol.200 (3), p.881-943
issn 0003-9527
1432-0673
language eng
recordid cdi_hal_primary_oai_HAL_inria_00437765v1
source Springer Nature
subjects Classical Mechanics
Complex Systems
Exact sciences and technology
Fluid- and Aerodynamics
Fundamental areas of phenomenology (including applications)
Mathematical and Computational Physics
Mathematics
Numerical Analysis
Physics
Physics and Astronomy
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Theoretical
title Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Representation%20Results%20for%20Energies%20Defined%20on%20Stochastic%20Lattices%20and%20Application%20to%20Nonlinear%20Elasticity&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Alicandro,%20Roberto&rft.date=2011-06-01&rft.volume=200&rft.issue=3&rft.spage=881&rft.epage=943&rft.pages=881-943&rft.issn=0003-9527&rft.eissn=1432-0673&rft.coden=AVRMAW&rft_id=info:doi/10.1007/s00205-010-0378-7&rft_dat=%3Cproquest_hal_p%3E2348911821%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-8a0981b44e06007891044fa72725035657d11fda6ac964b1437d7b8dd360a3af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866977137&rft_id=info:pmid/&rfr_iscdi=true