Loading…

Edge and corner detection by photometric quasi-invariants

Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2005-04, Vol.27 (4), p.625-630
Main Authors: van de Weijer, J., Gevers, T., Geusebroek, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103
cites cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103
container_end_page 630
container_issue 4
container_start_page 625
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 27
creator van de Weijer, J.
Gevers, T.
Geusebroek, J.-M.
description Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.
doi_str_mv 10.1109/TPAMI.2005.75
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00548526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1401914</ieee_id><sourcerecordid>896245702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgil2rR0-CDAXrQWZ932TydVxKawsreqjnkMlkbMpsZpvMFPrfm3UXFzwoOeSQH0_y5iHkLcISEfTn2--rrzdLCsCXkj8jC9RM14wz_ZwsAAWtlaLqhLzK-R4AGw7sJTlBLnWDQiyIvux--srGrnJjij5VnZ-8m8IYq_ap2t6N07jxUwquephtDnWIjzYFG6f8mrzo7ZD9m8N-Sn5cXd5eXNfrb19uLlbr2nEQU92IjtoOtWYAznqGovctZarl2DKPUnvZC8uwta1TTnHVsN5KEKrjwCUCOyWf9rl3djDbFDY2PZnRBnO9WpsQy2NMGb5RnIpHLPrjXm_T-DD7PJlNyM4Pg41-nLNRWtCGS6BFnv9TCskF263_QSq11gpZgWd_wftxTrF8jlFCljyqdtfWe-TSmHPy_Z-ZEMyuUfO7UbNr1Ehe_PtD6NxufHfUhwoL-HAANjs79MlGF_LRCQGMUlncu70L3vvjcQOosWG_AOGYrlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675282</pqid></control><display><type>article</type><title>Edge and corner detection by photometric quasi-invariants</title><source>IEEE Xplore (Online service)</source><creator>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</creator><creatorcontrib>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</creatorcontrib><description>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.75</identifier><identifier>PMID: 15794166</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Application software ; Applied sciences ; Artificial Intelligence ; color ; Computer Science ; Computer science; control theory; systems ; Computer vision ; Computer Vision and Pattern Recognition ; Corner detection ; Derivatives ; Exact sciences and technology ; Feature based ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Image segmentation ; Index Terms- Edge and feature detection ; Information Storage and Retrieval - methods ; Invariants ; Object detection ; Object recognition ; Optical reflection ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photometry ; Photometry - methods ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Shadows</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-04, Vol.27 (4), p.625-630</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</citedby><cites>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1401914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16603227$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15794166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00548526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>Geusebroek, J.-M.</creatorcontrib><title>Edge and corner detection by photometric quasi-invariants</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>color</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Corner detection</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Feature based</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Index Terms- Edge and feature detection</subject><subject>Information Storage and Retrieval - methods</subject><subject>Invariants</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optical reflection</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photometry</subject><subject>Photometry - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Shadows</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0c1rFDEYBvAgil2rR0-CDAXrQWZ932TydVxKawsreqjnkMlkbMpsZpvMFPrfm3UXFzwoOeSQH0_y5iHkLcISEfTn2--rrzdLCsCXkj8jC9RM14wz_ZwsAAWtlaLqhLzK-R4AGw7sJTlBLnWDQiyIvux--srGrnJjij5VnZ-8m8IYq_ap2t6N07jxUwquephtDnWIjzYFG6f8mrzo7ZD9m8N-Sn5cXd5eXNfrb19uLlbr2nEQU92IjtoOtWYAznqGovctZarl2DKPUnvZC8uwta1TTnHVsN5KEKrjwCUCOyWf9rl3djDbFDY2PZnRBnO9WpsQy2NMGb5RnIpHLPrjXm_T-DD7PJlNyM4Pg41-nLNRWtCGS6BFnv9TCskF263_QSq11gpZgWd_wftxTrF8jlFCljyqdtfWe-TSmHPy_Z-ZEMyuUfO7UbNr1Ehe_PtD6NxufHfUhwoL-HAANjs79MlGF_LRCQGMUlncu70L3vvjcQOosWG_AOGYrlw</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>van de Weijer, J.</creator><creator>Gevers, T.</creator><creator>Geusebroek, J.-M.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>20050401</creationdate><title>Edge and corner detection by photometric quasi-invariants</title><author>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>color</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Corner detection</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Feature based</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Index Terms- Edge and feature detection</topic><topic>Information Storage and Retrieval - methods</topic><topic>Invariants</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optical reflection</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photometry</topic><topic>Photometry - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Shadows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>Geusebroek, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Weijer, J.</au><au>Gevers, T.</au><au>Geusebroek, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge and corner detection by photometric quasi-invariants</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>27</volume><issue>4</issue><spage>625</spage><epage>630</epage><pages>625-630</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>15794166</pmid><doi>10.1109/TPAMI.2005.75</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2005-04, Vol.27 (4), p.625-630
issn 0162-8828
1939-3539
language eng
recordid cdi_hal_primary_oai_HAL_inria_00548526v1
source IEEE Xplore (Online service)
subjects Algorithms
Application software
Applied sciences
Artificial Intelligence
color
Computer Science
Computer science
control theory
systems
Computer vision
Computer Vision and Pattern Recognition
Corner detection
Derivatives
Exact sciences and technology
Feature based
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image retrieval
Image segmentation
Index Terms- Edge and feature detection
Information Storage and Retrieval - methods
Invariants
Object detection
Object recognition
Optical reflection
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Photometry
Photometry - methods
Reproducibility of Results
Robustness
Sensitivity and Specificity
Shadows
title Edge and corner detection by photometric quasi-invariants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20and%20corner%20detection%20by%20photometric%20quasi-invariants&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=van%20de%20Weijer,%20J.&rft.date=2005-04-01&rft.volume=27&rft.issue=4&rft.spage=625&rft.epage=630&rft.pages=625-630&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.75&rft_dat=%3Cproquest_hal_p%3E896245702%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867675282&rft_id=info:pmid/15794166&rft_ieee_id=1401914&rfr_iscdi=true