Loading…
Edge and corner detection by photometric quasi-invariants
Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2005-04, Vol.27 (4), p.625-630 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103 |
container_end_page | 630 |
container_issue | 4 |
container_start_page | 625 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 27 |
creator | van de Weijer, J. Gevers, T. Geusebroek, J.-M. |
description | Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power. |
doi_str_mv | 10.1109/TPAMI.2005.75 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00548526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1401914</ieee_id><sourcerecordid>896245702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgil2rR0-CDAXrQWZ932TydVxKawsreqjnkMlkbMpsZpvMFPrfm3UXFzwoOeSQH0_y5iHkLcISEfTn2--rrzdLCsCXkj8jC9RM14wz_ZwsAAWtlaLqhLzK-R4AGw7sJTlBLnWDQiyIvux--srGrnJjij5VnZ-8m8IYq_ap2t6N07jxUwquephtDnWIjzYFG6f8mrzo7ZD9m8N-Sn5cXd5eXNfrb19uLlbr2nEQU92IjtoOtWYAznqGovctZarl2DKPUnvZC8uwta1TTnHVsN5KEKrjwCUCOyWf9rl3djDbFDY2PZnRBnO9WpsQy2NMGb5RnIpHLPrjXm_T-DD7PJlNyM4Pg41-nLNRWtCGS6BFnv9TCskF263_QSq11gpZgWd_wftxTrF8jlFCljyqdtfWe-TSmHPy_Z-ZEMyuUfO7UbNr1Ehe_PtD6NxufHfUhwoL-HAANjs79MlGF_LRCQGMUlncu70L3vvjcQOosWG_AOGYrlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675282</pqid></control><display><type>article</type><title>Edge and corner detection by photometric quasi-invariants</title><source>IEEE Xplore (Online service)</source><creator>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</creator><creatorcontrib>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</creatorcontrib><description>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.75</identifier><identifier>PMID: 15794166</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Application software ; Applied sciences ; Artificial Intelligence ; color ; Computer Science ; Computer science; control theory; systems ; Computer vision ; Computer Vision and Pattern Recognition ; Corner detection ; Derivatives ; Exact sciences and technology ; Feature based ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Image segmentation ; Index Terms- Edge and feature detection ; Information Storage and Retrieval - methods ; Invariants ; Object detection ; Object recognition ; Optical reflection ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photometry ; Photometry - methods ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Shadows</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-04, Vol.27 (4), p.625-630</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</citedby><cites>FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1401914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16603227$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15794166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00548526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>Geusebroek, J.-M.</creatorcontrib><title>Edge and corner detection by photometric quasi-invariants</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>color</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Corner detection</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Feature based</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Index Terms- Edge and feature detection</subject><subject>Information Storage and Retrieval - methods</subject><subject>Invariants</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optical reflection</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photometry</subject><subject>Photometry - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Shadows</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0c1rFDEYBvAgil2rR0-CDAXrQWZ932TydVxKawsreqjnkMlkbMpsZpvMFPrfm3UXFzwoOeSQH0_y5iHkLcISEfTn2--rrzdLCsCXkj8jC9RM14wz_ZwsAAWtlaLqhLzK-R4AGw7sJTlBLnWDQiyIvux--srGrnJjij5VnZ-8m8IYq_ap2t6N07jxUwquephtDnWIjzYFG6f8mrzo7ZD9m8N-Sn5cXd5eXNfrb19uLlbr2nEQU92IjtoOtWYAznqGovctZarl2DKPUnvZC8uwta1TTnHVsN5KEKrjwCUCOyWf9rl3djDbFDY2PZnRBnO9WpsQy2NMGb5RnIpHLPrjXm_T-DD7PJlNyM4Pg41-nLNRWtCGS6BFnv9TCskF263_QSq11gpZgWd_wftxTrF8jlFCljyqdtfWe-TSmHPy_Z-ZEMyuUfO7UbNr1Ehe_PtD6NxufHfUhwoL-HAANjs79MlGF_LRCQGMUlncu70L3vvjcQOosWG_AOGYrlw</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>van de Weijer, J.</creator><creator>Gevers, T.</creator><creator>Geusebroek, J.-M.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>20050401</creationdate><title>Edge and corner detection by photometric quasi-invariants</title><author>van de Weijer, J. ; Gevers, T. ; Geusebroek, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>color</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Corner detection</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Feature based</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Index Terms- Edge and feature detection</topic><topic>Information Storage and Retrieval - methods</topic><topic>Invariants</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optical reflection</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photometry</topic><topic>Photometry - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Shadows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>Geusebroek, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Weijer, J.</au><au>Gevers, T.</au><au>Geusebroek, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge and corner detection by photometric quasi-invariants</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>27</volume><issue>4</issue><spage>625</spage><epage>630</epage><pages>625-630</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>15794166</pmid><doi>10.1109/TPAMI.2005.75</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2005-04, Vol.27 (4), p.625-630 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00548526v1 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Application software Applied sciences Artificial Intelligence color Computer Science Computer science control theory systems Computer vision Computer Vision and Pattern Recognition Corner detection Derivatives Exact sciences and technology Feature based Image edge detection Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image retrieval Image segmentation Index Terms- Edge and feature detection Information Storage and Retrieval - methods Invariants Object detection Object recognition Optical reflection Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Photometry Photometry - methods Reproducibility of Results Robustness Sensitivity and Specificity Shadows |
title | Edge and corner detection by photometric quasi-invariants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20and%20corner%20detection%20by%20photometric%20quasi-invariants&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=van%20de%20Weijer,%20J.&rft.date=2005-04-01&rft.volume=27&rft.issue=4&rft.spage=625&rft.epage=630&rft.pages=625-630&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.75&rft_dat=%3Cproquest_hal_p%3E896245702%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-46d2ad199300cae316feb238b51b3e179e7f6a31babc8c85843fa7068d5057103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867675282&rft_id=info:pmid/15794166&rft_ieee_id=1401914&rfr_iscdi=true |