Loading…
Object pose : The link between weak perspective, paraperspective, and full perspective
Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a po...
Saved in:
Published in: | International journal of computer vision 1997-03, Vol.22 (2), p.173-189 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-efe0081f1096f1d0e8b8de16d17c86ca82b12a0be1fc543550f118e072e572093 |
---|---|
cites | |
container_end_page | 189 |
container_issue | 2 |
container_start_page | 173 |
container_title | International journal of computer vision |
container_volume | 22 |
creator | HORAUD, R DORNAIKA, F LAMIROY, B CHRISTY, S |
description | Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and Davis' method and we show that it belongs to a larger class of methods where the perspective camera model is approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper) has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We compare the results obtained with this method and with a non-linear optimization method.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1007940112931 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inria_00590070v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26472118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-efe0081f1096f1d0e8b8de16d17c86ca82b12a0be1fc543550f118e072e572093</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgCs7p2WtA8aLV95KmaXYbQ50w2GV6DWn7yrp1bW3WDf97Cxuinh48frxPxq4RHhGEfBqPEECbEBCFkXjCBqi0DDAEdcoGYAQEKjJ4zi68XwGAiIUcsI95sqJ0y5vaEx_xxZJ4WVRrntB2T1TxPbk1b6j1Ta-KHT3wxrXuT8JVGc-7svzNLtlZ7kpPV8c4ZO8vz4vJNJjNX98m41mQSiG3AeUEEGOOYKIcM6A4iTPCKEOdxlHqYpGgcJAQ5qkKpVKQI8YEWpDSAowcsvtD3aUrbdMWG9d-2doVdjqe2aJqC2cBlOkPAzvs9d1BN2392ZHf2k3hUypLV1HdeSuiUIu-QQ9v_sFV3bVVv4lFRKm1MVr26vaonE9dmbeuSgv_M4bQoTb9K74B7Dt60A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113779973</pqid></control><display><type>article</type><title>Object pose : The link between weak perspective, paraperspective, and full perspective</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>HORAUD, R ; DORNAIKA, F ; LAMIROY, B ; CHRISTY, S</creator><creatorcontrib>HORAUD, R ; DORNAIKA, F ; LAMIROY, B ; CHRISTY, S</creatorcontrib><description>Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and Davis' method and we show that it belongs to a larger class of methods where the perspective camera model is approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper) has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We compare the results obtained with this method and with a non-linear optimization method.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1023/A:1007940112931</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Cameras ; Computer Science ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Graphics ; Modelling and identification ; Pattern recognition. Digital image processing. Computational geometry ; Studies</subject><ispartof>International journal of computer vision, 1997-03, Vol.22 (2), p.173-189</ispartof><rights>1997 INIST-CNRS</rights><rights>Kluwer Academic Publishers 1997</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-efe0081f1096f1d0e8b8de16d17c86ca82b12a0be1fc543550f118e072e572093</citedby><orcidid>0000-0001-6581-9680 ; 0000-0001-5232-024X ; 0000-0003-0871-0149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1113779973/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1113779973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11666,27900,27901,36036,36037,44338,74864</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2747929$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00590070$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HORAUD, R</creatorcontrib><creatorcontrib>DORNAIKA, F</creatorcontrib><creatorcontrib>LAMIROY, B</creatorcontrib><creatorcontrib>CHRISTY, S</creatorcontrib><title>Object pose : The link between weak perspective, paraperspective, and full perspective</title><title>International journal of computer vision</title><description>Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and Davis' method and we show that it belongs to a larger class of methods where the perspective camera model is approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper) has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We compare the results obtained with this method and with a non-linear optimization method.[PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Graphics</subject><subject>Modelling and identification</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Studies</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpd0c1LwzAUAPAgCs7p2WtA8aLV95KmaXYbQ50w2GV6DWn7yrp1bW3WDf97Cxuinh48frxPxq4RHhGEfBqPEECbEBCFkXjCBqi0DDAEdcoGYAQEKjJ4zi68XwGAiIUcsI95sqJ0y5vaEx_xxZJ4WVRrntB2T1TxPbk1b6j1Ta-KHT3wxrXuT8JVGc-7svzNLtlZ7kpPV8c4ZO8vz4vJNJjNX98m41mQSiG3AeUEEGOOYKIcM6A4iTPCKEOdxlHqYpGgcJAQ5qkKpVKQI8YEWpDSAowcsvtD3aUrbdMWG9d-2doVdjqe2aJqC2cBlOkPAzvs9d1BN2392ZHf2k3hUypLV1HdeSuiUIu-QQ9v_sFV3bVVv4lFRKm1MVr26vaonE9dmbeuSgv_M4bQoTb9K74B7Dt60A</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>HORAUD, R</creator><creator>DORNAIKA, F</creator><creator>LAMIROY, B</creator><creator>CHRISTY, S</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6581-9680</orcidid><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0003-0871-0149</orcidid></search><sort><creationdate>19970301</creationdate><title>Object pose : The link between weak perspective, paraperspective, and full perspective</title><author>HORAUD, R ; DORNAIKA, F ; LAMIROY, B ; CHRISTY, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-efe0081f1096f1d0e8b8de16d17c86ca82b12a0be1fc543550f118e072e572093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Graphics</topic><topic>Modelling and identification</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HORAUD, R</creatorcontrib><creatorcontrib>DORNAIKA, F</creatorcontrib><creatorcontrib>LAMIROY, B</creatorcontrib><creatorcontrib>CHRISTY, S</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HORAUD, R</au><au>DORNAIKA, F</au><au>LAMIROY, B</au><au>CHRISTY, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object pose : The link between weak perspective, paraperspective, and full perspective</atitle><jtitle>International journal of computer vision</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>22</volume><issue>2</issue><spage>173</spage><epage>189</epage><pages>173-189</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and Davis' method and we show that it belongs to a larger class of methods where the perspective camera model is approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper) has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We compare the results obtained with this method and with a non-linear optimization method.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1007940112931</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6581-9680</orcidid><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><orcidid>https://orcid.org/0000-0003-0871-0149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 1997-03, Vol.22 (2), p.173-189 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inria_00590070v1 |
source | ABI/INFORM global; Springer Nature |
subjects | Applied sciences Artificial intelligence Cameras Computer Science Computer science control theory systems Control theory. Systems Exact sciences and technology Graphics Modelling and identification Pattern recognition. Digital image processing. Computational geometry Studies |
title | Object pose : The link between weak perspective, paraperspective, and full perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T07%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20pose%20:%20The%20link%20between%20weak%20perspective,%20paraperspective,%20and%20full%20perspective&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=HORAUD,%20R&rft.date=1997-03-01&rft.volume=22&rft.issue=2&rft.spage=173&rft.epage=189&rft.pages=173-189&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1023/A:1007940112931&rft_dat=%3Cproquest_hal_p%3E26472118%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-efe0081f1096f1d0e8b8de16d17c86ca82b12a0be1fc543550f118e072e572093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113779973&rft_id=info:pmid/&rfr_iscdi=true |