Loading…
Advances in the segmentation of multi-component microanalytical images
Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-m...
Saved in:
Published in: | Ultramicroscopy 2005-05, Vol.103 (2), p.141-152 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3 |
container_end_page | 152 |
container_issue | 2 |
container_start_page | 141 |
container_title | Ultramicroscopy |
container_volume | 103 |
creator | Cutrona, Jérôme Bonnet, Noël Herbin, Michel Hofer, Ferdinand |
description | Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (
C-means and fuzzy
C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map. |
doi_str_mv | 10.1016/j.ultramic.2004.11.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00145662v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399104002190</els_id><sourcerecordid>67526183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS0EoiHwFao9cWK3Hv-Nb0QVpZUicend8nrHraPddbA3kfrtcZUAx54sjX8z7808Qq6BdkBB3ey747hkN0XfMUpFB9BRKt-RFWy0aZlm_D1ZUU5Fy42BK_KplD2lFKjYfCRXILUWTMsVudsOJzd7LE2cm-UZm4JPE86LW2KamxSaqerE1qfpkOZab6piTm5248sSvRubOLknLJ_Jh-DGgl8u75o83v14vL1vd79-Ptxud60XXCxt6EN1ZkAOVAjOOEXBeuyN643higalTf0ZQvBaOyeVMz1wFaRC8Fo6vibfzmOf3WgPuWrnF5tctPfbnY1zwTzZuqSQSrETVPzrGT_k9PuIZbFTLB7H0c2YjsUqLZmCDX8TZBtJDa_kmqgzWI9QSsbwzwVQ-xqM3du_wdjXYCxAdSRr4_VF4dhPOPxvuyRRge9nAOv5ThGzLT5iTWaIGf1ihxTf0vgDUxaiWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28509318</pqid></control><display><type>article</type><title>Advances in the segmentation of multi-component microanalytical images</title><source>Elsevier</source><creator>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</creator><creatorcontrib>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</creatorcontrib><description>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (
C-means and fuzzy
C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2004.11.005</identifier><identifier>PMID: 15774275</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Clustering ; Fuzzy logic ; Human health and pathology ; Life Sciences ; Multi-component images ; Probability density function ; Pulmonology and respiratory tract ; Relaxation ; Segmentation</subject><ispartof>Ultramicroscopy, 2005-05, Vol.103 (2), p.141-152</ispartof><rights>2004 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</citedby><cites>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</cites><orcidid>0000-0002-9162-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15774275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00145662$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutrona, Jérôme</creatorcontrib><creatorcontrib>Bonnet, Noël</creatorcontrib><creatorcontrib>Herbin, Michel</creatorcontrib><creatorcontrib>Hofer, Ferdinand</creatorcontrib><title>Advances in the segmentation of multi-component microanalytical images</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (
C-means and fuzzy
C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</description><subject>Clustering</subject><subject>Fuzzy logic</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Multi-component images</subject><subject>Probability density function</subject><subject>Pulmonology and respiratory tract</subject><subject>Relaxation</subject><subject>Segmentation</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS0EoiHwFao9cWK3Hv-Nb0QVpZUicend8nrHraPddbA3kfrtcZUAx54sjX8z7808Qq6BdkBB3ey747hkN0XfMUpFB9BRKt-RFWy0aZlm_D1ZUU5Fy42BK_KplD2lFKjYfCRXILUWTMsVudsOJzd7LE2cm-UZm4JPE86LW2KamxSaqerE1qfpkOZab6piTm5248sSvRubOLknLJ_Jh-DGgl8u75o83v14vL1vd79-Ptxud60XXCxt6EN1ZkAOVAjOOEXBeuyN643higalTf0ZQvBaOyeVMz1wFaRC8Fo6vibfzmOf3WgPuWrnF5tctPfbnY1zwTzZuqSQSrETVPzrGT_k9PuIZbFTLB7H0c2YjsUqLZmCDX8TZBtJDa_kmqgzWI9QSsbwzwVQ-xqM3du_wdjXYCxAdSRr4_VF4dhPOPxvuyRRge9nAOv5ThGzLT5iTWaIGf1ihxTf0vgDUxaiWQ</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Cutrona, Jérôme</creator><creator>Bonnet, Noël</creator><creator>Herbin, Michel</creator><creator>Hofer, Ferdinand</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9162-0082</orcidid></search><sort><creationdate>20050501</creationdate><title>Advances in the segmentation of multi-component microanalytical images</title><author>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Clustering</topic><topic>Fuzzy logic</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Multi-component images</topic><topic>Probability density function</topic><topic>Pulmonology and respiratory tract</topic><topic>Relaxation</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutrona, Jérôme</creatorcontrib><creatorcontrib>Bonnet, Noël</creatorcontrib><creatorcontrib>Herbin, Michel</creatorcontrib><creatorcontrib>Hofer, Ferdinand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutrona, Jérôme</au><au>Bonnet, Noël</au><au>Herbin, Michel</au><au>Hofer, Ferdinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in the segmentation of multi-component microanalytical images</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>103</volume><issue>2</issue><spage>141</spage><epage>152</epage><pages>141-152</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms (
C-means and fuzzy
C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15774275</pmid><doi>10.1016/j.ultramic.2004.11.005</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9162-0082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2005-05, Vol.103 (2), p.141-152 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00145662v1 |
source | Elsevier |
subjects | Clustering Fuzzy logic Human health and pathology Life Sciences Multi-component images Probability density function Pulmonology and respiratory tract Relaxation Segmentation |
title | Advances in the segmentation of multi-component microanalytical images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20the%20segmentation%20of%20multi-component%20microanalytical%20images&rft.jtitle=Ultramicroscopy&rft.au=Cutrona,%20J%C3%A9r%C3%B4me&rft.date=2005-05-01&rft.volume=103&rft.issue=2&rft.spage=141&rft.epage=152&rft.pages=141-152&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2004.11.005&rft_dat=%3Cproquest_hal_p%3E67526183%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28509318&rft_id=info:pmid/15774275&rfr_iscdi=true |