Loading…

Advances in the segmentation of multi-component microanalytical images

Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-m...

Full description

Saved in:
Bibliographic Details
Published in:Ultramicroscopy 2005-05, Vol.103 (2), p.141-152
Main Authors: Cutrona, Jérôme, Bonnet, Noël, Herbin, Michel, Hofer, Ferdinand
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3
cites cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3
container_end_page 152
container_issue 2
container_start_page 141
container_title Ultramicroscopy
container_volume 103
creator Cutrona, Jérôme
Bonnet, Noël
Herbin, Michel
Hofer, Ferdinand
description Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.
doi_str_mv 10.1016/j.ultramic.2004.11.005
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00145662v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399104002190</els_id><sourcerecordid>67526183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS0EoiHwFao9cWK3Hv-Nb0QVpZUicend8nrHraPddbA3kfrtcZUAx54sjX8z7808Qq6BdkBB3ey747hkN0XfMUpFB9BRKt-RFWy0aZlm_D1ZUU5Fy42BK_KplD2lFKjYfCRXILUWTMsVudsOJzd7LE2cm-UZm4JPE86LW2KamxSaqerE1qfpkOZab6piTm5248sSvRubOLknLJ_Jh-DGgl8u75o83v14vL1vd79-Ptxud60XXCxt6EN1ZkAOVAjOOEXBeuyN643higalTf0ZQvBaOyeVMz1wFaRC8Fo6vibfzmOf3WgPuWrnF5tctPfbnY1zwTzZuqSQSrETVPzrGT_k9PuIZbFTLB7H0c2YjsUqLZmCDX8TZBtJDa_kmqgzWI9QSsbwzwVQ-xqM3du_wdjXYCxAdSRr4_VF4dhPOPxvuyRRge9nAOv5ThGzLT5iTWaIGf1ihxTf0vgDUxaiWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28509318</pqid></control><display><type>article</type><title>Advances in the segmentation of multi-component microanalytical images</title><source>Elsevier</source><creator>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</creator><creatorcontrib>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</creatorcontrib><description>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2004.11.005</identifier><identifier>PMID: 15774275</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Clustering ; Fuzzy logic ; Human health and pathology ; Life Sciences ; Multi-component images ; Probability density function ; Pulmonology and respiratory tract ; Relaxation ; Segmentation</subject><ispartof>Ultramicroscopy, 2005-05, Vol.103 (2), p.141-152</ispartof><rights>2004 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</citedby><cites>FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</cites><orcidid>0000-0002-9162-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15774275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00145662$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutrona, Jérôme</creatorcontrib><creatorcontrib>Bonnet, Noël</creatorcontrib><creatorcontrib>Herbin, Michel</creatorcontrib><creatorcontrib>Hofer, Ferdinand</creatorcontrib><title>Advances in the segmentation of multi-component microanalytical images</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</description><subject>Clustering</subject><subject>Fuzzy logic</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Multi-component images</subject><subject>Probability density function</subject><subject>Pulmonology and respiratory tract</subject><subject>Relaxation</subject><subject>Segmentation</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vEzEQxS0EoiHwFao9cWK3Hv-Nb0QVpZUicend8nrHraPddbA3kfrtcZUAx54sjX8z7808Qq6BdkBB3ey747hkN0XfMUpFB9BRKt-RFWy0aZlm_D1ZUU5Fy42BK_KplD2lFKjYfCRXILUWTMsVudsOJzd7LE2cm-UZm4JPE86LW2KamxSaqerE1qfpkOZab6piTm5248sSvRubOLknLJ_Jh-DGgl8u75o83v14vL1vd79-Ptxud60XXCxt6EN1ZkAOVAjOOEXBeuyN643higalTf0ZQvBaOyeVMz1wFaRC8Fo6vibfzmOf3WgPuWrnF5tctPfbnY1zwTzZuqSQSrETVPzrGT_k9PuIZbFTLB7H0c2YjsUqLZmCDX8TZBtJDa_kmqgzWI9QSsbwzwVQ-xqM3du_wdjXYCxAdSRr4_VF4dhPOPxvuyRRge9nAOv5ThGzLT5iTWaIGf1ihxTf0vgDUxaiWQ</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Cutrona, Jérôme</creator><creator>Bonnet, Noël</creator><creator>Herbin, Michel</creator><creator>Hofer, Ferdinand</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9162-0082</orcidid></search><sort><creationdate>20050501</creationdate><title>Advances in the segmentation of multi-component microanalytical images</title><author>Cutrona, Jérôme ; Bonnet, Noël ; Herbin, Michel ; Hofer, Ferdinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Clustering</topic><topic>Fuzzy logic</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Multi-component images</topic><topic>Probability density function</topic><topic>Pulmonology and respiratory tract</topic><topic>Relaxation</topic><topic>Segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutrona, Jérôme</creatorcontrib><creatorcontrib>Bonnet, Noël</creatorcontrib><creatorcontrib>Herbin, Michel</creatorcontrib><creatorcontrib>Hofer, Ferdinand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutrona, Jérôme</au><au>Bonnet, Noël</au><au>Herbin, Michel</au><au>Hofer, Ferdinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in the segmentation of multi-component microanalytical images</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>103</volume><issue>2</issue><spage>141</spage><epage>152</epage><pages>141-152</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Segmenting multi-component microanalytical images consists in trying to find zones of the specimen with approximate homogeneous composition, representing different chemical phases. This can be done through pixel clustering. We first highlight some limitations of classical clustering algorithms ( C-means and fuzzy C-means). Then, we describe a new algorithm we have contributed to develop: the Parzen-watersheds algorithm. This algorithm is based on the estimation of the probability density function of the whole data set in the feature space (through the Parzen approach) and its partitioning using a method inherited from mathematical morphology: the watersheds method. Next, we introduce a fuzzy version of this approach, where the pixels are characterized by their grades of membership to the different classes. Finally, we show how the definition of the grades of membership can be used to improve the results of clustering, through probabilistic relaxation in the image space. The different methods presented are illustrated through an example in the field of electron energy loss mapping, where four elemental maps are concentrated in a single chemical phase map.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15774275</pmid><doi>10.1016/j.ultramic.2004.11.005</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9162-0082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2005-05, Vol.103 (2), p.141-152
issn 0304-3991
1879-2723
language eng
recordid cdi_hal_primary_oai_HAL_inserm_00145662v1
source Elsevier
subjects Clustering
Fuzzy logic
Human health and pathology
Life Sciences
Multi-component images
Probability density function
Pulmonology and respiratory tract
Relaxation
Segmentation
title Advances in the segmentation of multi-component microanalytical images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20the%20segmentation%20of%20multi-component%20microanalytical%20images&rft.jtitle=Ultramicroscopy&rft.au=Cutrona,%20J%C3%A9r%C3%B4me&rft.date=2005-05-01&rft.volume=103&rft.issue=2&rft.spage=141&rft.epage=152&rft.pages=141-152&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2004.11.005&rft_dat=%3Cproquest_hal_p%3E67526183%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-fbf723915d0443230e42beb9ab99360f679d04dffc77aa56a9b136f56e1c75a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28509318&rft_id=info:pmid/15774275&rfr_iscdi=true