Loading…

Physico-chemical–mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates

Abstract Calcium phosphate cements (CPCs) are successfully used as bone substitutes in dentistry and orthopaedic applications. This study investigated the physico-chemical–mechanical properties of and in vitro biological properties (cell response) of CPCs prepared with amorphous calcium carbonate ph...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2007-02, Vol.28 (6), p.956-965
Main Authors: Julien, Marion, Khairoun, Ibrahim, LeGeros, Racquel Z, Delplace, Severine, Pilet, Paul, Weiss, Pierre, Daculsi, Guy, Bouler, Jean Michel, Guicheux, Jerome
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Calcium phosphate cements (CPCs) are successfully used as bone substitutes in dentistry and orthopaedic applications. This study investigated the physico-chemical–mechanical properties of and in vitro biological properties (cell response) of CPCs prepared with amorphous calcium carbonate phosphate (ACCP) doped with magnesium (ACCP-Mg), zinc (ACCp-Zn) or fluoride (ACCP-F) ions. The experimental CPC consisted of α -TCP, doped ACCP, and MPCM powders as matrix and biphasic calcium phosphate (BCP) granules. X-ray diffraction analysis showed that the matrix converted to apatite with poor crystallinity (reflecting small crystal size) after setting for 24 h, while BCP remained apparently unchanged. Cements with ACCP-F (F-CPC) had shorter setting times and greater compressive strength compared to cements with ACCP-Mg (Mg-CPC) or ACCP-Zn (Zn-CPC). Scanning electron microscopy (SEM) showed that crystals set on Mg-CPC and Zn-CPC were smaller compared to those on F-CPC. The total porosity of Mg-CPC was greater compared to Zn-CPC or F-CPC. Osteoblast-like cells, MC3T3-E1, remained viable and maintained their ability to express alkaline phosphatase in contact with the CPCs with doped ACCPs.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2006.10.018