Loading…
Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway: role of hypoxia on MSC regenerative properties
Mesenchymal stem cells (MSC) are multipotent postnatal stem cells, involved in the treatment of ischemic vascular diseases. We investigate the ability of MSC, exposed to short-term hypoxic conditions, to participate in vascular and tissue regeneration in an in vivo model of hindlimb ischemia. Transp...
Saved in:
Published in: | Molecular therapy 2010-08, Vol.18 (8), p.1545-52 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 52 |
container_issue | 8 |
container_start_page | 1545 |
container_title | Molecular therapy |
container_volume | 18 |
creator | Leroux, Lionel Descamps, Betty Ferreira Tojais, Nancy Séguy, Benjamin Oses, Pierre Moreau, Catherine Daret, Danièle Ivanovic, Zoran Boiron, Jean-Michel Daniel Lamazière, Jean-Marie Dufourcq, Pascale Couffinhal, Thierry Duplàa, Cécile |
description | Mesenchymal stem cells (MSC) are multipotent postnatal stem cells, involved in the treatment of ischemic vascular diseases. We investigate the ability of MSC, exposed to short-term hypoxic conditions, to participate in vascular and tissue regeneration in an in vivo model of hindlimb ischemia. Transplantation of hypoxic preconditioned murine MSC (HypMSC) enhanced skeletal muscle regeneration at day 7, improved blood flow and vascular formation compared to injected nonpreconditioned MSC (NormMSC). These observed effects were correlated with an increase in HypMSC engraftment and a putative role in necrotic skeletal muscle fiber clearance. Moreover, HypMSC transplantation resulted in a large increase in Wnt4 (wingless-related MMTV integration site 4) expression and we demonstrate its functional significance on MSC proliferation and migration, endothelial cell (EC) migration, as well as myoblast differentiation. Furthermore, suppression of Wnt4 expression in HypMSC, abrogated the hypoxia-induced vascular regenerative properties of these cells in the mouse hindlimb ischemia model. Our data suggest that hypoxic preconditioning plays a critical role in the functional capabilities of MSC, shifting MSC location in situ to enhance ischemic tissue recovery, facilitating vascular cell mobilization, and skeletal muscle fiber regeneration via a paracrine Wnt-dependent mechanism. |
doi_str_mv | 10.1038/mt.2010.108 |
format | article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_inserm_00509086v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_inserm_00509086v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_inserm_00509086v13</originalsourceid><addsrcrecordid>eNqVjU1OwzAUhC0EouVnxQXeAUix0yZKllVFlUpUqmgFy-iRvNYG24lsp5CDcF8CQuxZzTej0QxjN4JPBJ9mdyZMYv5jshM2FkmcRJzHs9M_FumIXXj_OpBI8vScjWKeJCIX8Zh9Fn3bfCiEjaOqsbUKqrFUw5o82Ur2BjVsAxlYkNYeVqZ1zZHgCX3VaXSAtobtG2kKQ3Hd-UoTLNULOXikA1ly-D0I830YopWvJJnhbCdd0x0kIDzbMItqasnWZANsMMh37K_Y2R61p-tfvWS3y_vdoogk6rJ1yqDrywZVWcwfSmU9OVNynvCcZ-lRTP9Z_wLuAWX_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway: role of hypoxia on MSC regenerative properties</title><source>PubMed Central</source><creator>Leroux, Lionel ; Descamps, Betty ; Ferreira Tojais, Nancy ; Séguy, Benjamin ; Oses, Pierre ; Moreau, Catherine ; Daret, Danièle ; Ivanovic, Zoran ; Boiron, Jean-Michel ; Daniel Lamazière, Jean-Marie ; Dufourcq, Pascale ; Couffinhal, Thierry ; Duplàa, Cécile</creator><creatorcontrib>Leroux, Lionel ; Descamps, Betty ; Ferreira Tojais, Nancy ; Séguy, Benjamin ; Oses, Pierre ; Moreau, Catherine ; Daret, Danièle ; Ivanovic, Zoran ; Boiron, Jean-Michel ; Daniel Lamazière, Jean-Marie ; Dufourcq, Pascale ; Couffinhal, Thierry ; Duplàa, Cécile</creatorcontrib><description>Mesenchymal stem cells (MSC) are multipotent postnatal stem cells, involved in the treatment of ischemic vascular diseases. We investigate the ability of MSC, exposed to short-term hypoxic conditions, to participate in vascular and tissue regeneration in an in vivo model of hindlimb ischemia. Transplantation of hypoxic preconditioned murine MSC (HypMSC) enhanced skeletal muscle regeneration at day 7, improved blood flow and vascular formation compared to injected nonpreconditioned MSC (NormMSC). These observed effects were correlated with an increase in HypMSC engraftment and a putative role in necrotic skeletal muscle fiber clearance. Moreover, HypMSC transplantation resulted in a large increase in Wnt4 (wingless-related MMTV integration site 4) expression and we demonstrate its functional significance on MSC proliferation and migration, endothelial cell (EC) migration, as well as myoblast differentiation. Furthermore, suppression of Wnt4 expression in HypMSC, abrogated the hypoxia-induced vascular regenerative properties of these cells in the mouse hindlimb ischemia model. Our data suggest that hypoxic preconditioning plays a critical role in the functional capabilities of MSC, shifting MSC location in situ to enhance ischemic tissue recovery, facilitating vascular cell mobilization, and skeletal muscle fiber regeneration via a paracrine Wnt-dependent mechanism.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2010.108</identifier><identifier>PMID: 20551912</identifier><language>eng</language><publisher>Cell Press</publisher><subject>Cardiology and cardiovascular system ; Human health and pathology ; Life Sciences</subject><ispartof>Molecular therapy, 2010-08, Vol.18 (8), p.1545-52</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inserm.hal.science/inserm-00509086$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroux, Lionel</creatorcontrib><creatorcontrib>Descamps, Betty</creatorcontrib><creatorcontrib>Ferreira Tojais, Nancy</creatorcontrib><creatorcontrib>Séguy, Benjamin</creatorcontrib><creatorcontrib>Oses, Pierre</creatorcontrib><creatorcontrib>Moreau, Catherine</creatorcontrib><creatorcontrib>Daret, Danièle</creatorcontrib><creatorcontrib>Ivanovic, Zoran</creatorcontrib><creatorcontrib>Boiron, Jean-Michel</creatorcontrib><creatorcontrib>Daniel Lamazière, Jean-Marie</creatorcontrib><creatorcontrib>Dufourcq, Pascale</creatorcontrib><creatorcontrib>Couffinhal, Thierry</creatorcontrib><creatorcontrib>Duplàa, Cécile</creatorcontrib><title>Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway: role of hypoxia on MSC regenerative properties</title><title>Molecular therapy</title><description>Mesenchymal stem cells (MSC) are multipotent postnatal stem cells, involved in the treatment of ischemic vascular diseases. We investigate the ability of MSC, exposed to short-term hypoxic conditions, to participate in vascular and tissue regeneration in an in vivo model of hindlimb ischemia. Transplantation of hypoxic preconditioned murine MSC (HypMSC) enhanced skeletal muscle regeneration at day 7, improved blood flow and vascular formation compared to injected nonpreconditioned MSC (NormMSC). These observed effects were correlated with an increase in HypMSC engraftment and a putative role in necrotic skeletal muscle fiber clearance. Moreover, HypMSC transplantation resulted in a large increase in Wnt4 (wingless-related MMTV integration site 4) expression and we demonstrate its functional significance on MSC proliferation and migration, endothelial cell (EC) migration, as well as myoblast differentiation. Furthermore, suppression of Wnt4 expression in HypMSC, abrogated the hypoxia-induced vascular regenerative properties of these cells in the mouse hindlimb ischemia model. Our data suggest that hypoxic preconditioning plays a critical role in the functional capabilities of MSC, shifting MSC location in situ to enhance ischemic tissue recovery, facilitating vascular cell mobilization, and skeletal muscle fiber regeneration via a paracrine Wnt-dependent mechanism.</description><subject>Cardiology and cardiovascular system</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqVjU1OwzAUhC0EouVnxQXeAUix0yZKllVFlUpUqmgFy-iRvNYG24lsp5CDcF8CQuxZzTej0QxjN4JPBJ9mdyZMYv5jshM2FkmcRJzHs9M_FumIXXj_OpBI8vScjWKeJCIX8Zh9Fn3bfCiEjaOqsbUKqrFUw5o82Ur2BjVsAxlYkNYeVqZ1zZHgCX3VaXSAtobtG2kKQ3Hd-UoTLNULOXikA1ly-D0I830YopWvJJnhbCdd0x0kIDzbMItqasnWZANsMMh37K_Y2R61p-tfvWS3y_vdoogk6rJ1yqDrywZVWcwfSmU9OVNynvCcZ-lRTP9Z_wLuAWX_</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Leroux, Lionel</creator><creator>Descamps, Betty</creator><creator>Ferreira Tojais, Nancy</creator><creator>Séguy, Benjamin</creator><creator>Oses, Pierre</creator><creator>Moreau, Catherine</creator><creator>Daret, Danièle</creator><creator>Ivanovic, Zoran</creator><creator>Boiron, Jean-Michel</creator><creator>Daniel Lamazière, Jean-Marie</creator><creator>Dufourcq, Pascale</creator><creator>Couffinhal, Thierry</creator><creator>Duplàa, Cécile</creator><general>Cell Press</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201008</creationdate><title>Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway</title><author>Leroux, Lionel ; Descamps, Betty ; Ferreira Tojais, Nancy ; Séguy, Benjamin ; Oses, Pierre ; Moreau, Catherine ; Daret, Danièle ; Ivanovic, Zoran ; Boiron, Jean-Michel ; Daniel Lamazière, Jean-Marie ; Dufourcq, Pascale ; Couffinhal, Thierry ; Duplàa, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_inserm_00509086v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cardiology and cardiovascular system</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroux, Lionel</creatorcontrib><creatorcontrib>Descamps, Betty</creatorcontrib><creatorcontrib>Ferreira Tojais, Nancy</creatorcontrib><creatorcontrib>Séguy, Benjamin</creatorcontrib><creatorcontrib>Oses, Pierre</creatorcontrib><creatorcontrib>Moreau, Catherine</creatorcontrib><creatorcontrib>Daret, Danièle</creatorcontrib><creatorcontrib>Ivanovic, Zoran</creatorcontrib><creatorcontrib>Boiron, Jean-Michel</creatorcontrib><creatorcontrib>Daniel Lamazière, Jean-Marie</creatorcontrib><creatorcontrib>Dufourcq, Pascale</creatorcontrib><creatorcontrib>Couffinhal, Thierry</creatorcontrib><creatorcontrib>Duplàa, Cécile</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroux, Lionel</au><au>Descamps, Betty</au><au>Ferreira Tojais, Nancy</au><au>Séguy, Benjamin</au><au>Oses, Pierre</au><au>Moreau, Catherine</au><au>Daret, Danièle</au><au>Ivanovic, Zoran</au><au>Boiron, Jean-Michel</au><au>Daniel Lamazière, Jean-Marie</au><au>Dufourcq, Pascale</au><au>Couffinhal, Thierry</au><au>Duplàa, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway: role of hypoxia on MSC regenerative properties</atitle><jtitle>Molecular therapy</jtitle><date>2010-08</date><risdate>2010</risdate><volume>18</volume><issue>8</issue><spage>1545</spage><epage>52</epage><pages>1545-52</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Mesenchymal stem cells (MSC) are multipotent postnatal stem cells, involved in the treatment of ischemic vascular diseases. We investigate the ability of MSC, exposed to short-term hypoxic conditions, to participate in vascular and tissue regeneration in an in vivo model of hindlimb ischemia. Transplantation of hypoxic preconditioned murine MSC (HypMSC) enhanced skeletal muscle regeneration at day 7, improved blood flow and vascular formation compared to injected nonpreconditioned MSC (NormMSC). These observed effects were correlated with an increase in HypMSC engraftment and a putative role in necrotic skeletal muscle fiber clearance. Moreover, HypMSC transplantation resulted in a large increase in Wnt4 (wingless-related MMTV integration site 4) expression and we demonstrate its functional significance on MSC proliferation and migration, endothelial cell (EC) migration, as well as myoblast differentiation. Furthermore, suppression of Wnt4 expression in HypMSC, abrogated the hypoxia-induced vascular regenerative properties of these cells in the mouse hindlimb ischemia model. Our data suggest that hypoxic preconditioning plays a critical role in the functional capabilities of MSC, shifting MSC location in situ to enhance ischemic tissue recovery, facilitating vascular cell mobilization, and skeletal muscle fiber regeneration via a paracrine Wnt-dependent mechanism.</abstract><pub>Cell Press</pub><pmid>20551912</pmid><doi>10.1038/mt.2010.108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2010-08, Vol.18 (8), p.1545-52 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_inserm_00509086v1 |
source | PubMed Central |
subjects | Cardiology and cardiovascular system Human health and pathology Life Sciences |
title | Hypoxia Preconditioned Mesenchymal Stem Cells Improve Vascular and Skeletal Muscle Fiber Regeneration After Ischemia Through a Wnt4-dependent Pathway: role of hypoxia on MSC regenerative properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20Preconditioned%20Mesenchymal%20Stem%20Cells%20Improve%20Vascular%20and%20Skeletal%20Muscle%20Fiber%20Regeneration%20After%20Ischemia%20Through%20a%20Wnt4-dependent%20Pathway:%20role%20of%20hypoxia%20on%20MSC%20regenerative%20properties&rft.jtitle=Molecular%20therapy&rft.au=Leroux,%20Lionel&rft.date=2010-08&rft.volume=18&rft.issue=8&rft.spage=1545&rft.epage=52&rft.pages=1545-52&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2010.108&rft_dat=%3Chal%3Eoai_HAL_inserm_00509086v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_inserm_00509086v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20551912&rfr_iscdi=true |