Loading…

Substitutions of Asn-726 in the Active Site of Yeast DNA Topoisomerase I Define Novel Mechanisms of Stabilizing the Covalent Enzyme-DNA Intermediate

Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-05, Vol.275 (20), p.15246-15253
Main Authors: Fertala, Jolanta, Vance, John R., Pourquier, Philippe, Pommier, Yves, Bjornsti, Mary-Ann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.20.15246