Loading…
Beneficial effects of resveratrol on respiratory chain defects in patients' fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling
Mitochondrial respiratory chain (RC) disorders are the most prevalent inborn metabolic diseases and remain without effective treatment to date. Up-regulation of residual enzyme activity has been proposed as a possible therapeutic approach in this group of disorders. As resveratrol (RSV), a natural c...
Saved in:
Published in: | Human molecular genetics 2014-04, Vol.23 (8), p.2106-2119 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitochondrial respiratory chain (RC) disorders are the most prevalent inborn metabolic diseases and remain without effective treatment to date. Up-regulation of residual enzyme activity has been proposed as a possible therapeutic approach in this group of disorders. As resveratrol (RSV), a natural compound, was proposed to stimulate mitochondrial metabolism in rodents, we tested the effect of this compound on mitochondrial functions in control or in Complex I (CI)- or Complex IV (CIV)-deficient patients' fibroblasts. We show that RSV stimulates the expression of a panel of proteins representing structural subunits or assembly factors of the five RC complexes, in control fibroblasts. In moderate RC-deficient patients' cells, RSV treatment increases the amount of mutated proteins and stimulates residual enzyme activities. In these patients' cells, we establish that up-regulation of RC enzyme activities induced by RSV translates into increased cellular O2 consumption rates and results in the correction of RC deficiencies. Importantly, RSV also prevents the accumulation of lactate that occurred in RC-deficient fibroblasts. Different complementary approaches demonstrate that RSV induces a mitochondrial biogenesis that might underlie the increase in mitochondrial capacities. Finally, we showed that, in human fibroblasts, RSV stimulated mitochondrial functions mainly in a SIRT1- and AMPK-independent manner and that its effects rather involved the estrogen receptor (ER) and estrogen-related receptor alpha (ERRα) signaling pathways. These results represent the first demonstration that RSV could have a beneficial effect on inborn CI and CIV deficiencies from nuclear origin, in human fibroblasts and might be clinically relevant for the treatment of some RC deficiencies. |
---|---|
ISSN: | 0964-6906 1460-2083 |
DOI: | 10.1093/hmg/ddt603 |