Loading…

Radar rainfall estimation in the context of post-event analysis of flash-flood events

A method to estimate rainfall from radar data for post-event analysis of flash-flood events has been developed within the EC-funded HYDRATE project. It follows a pragmatic approach including careful analysis of the observation conditions for the radar system(s) available for the considered case. Clu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2010-11, Vol.394 (1-2), p.17-27
Main Authors: Bouilloud, Ludovic, Delrieu, Guy, Boudevillain, Brice, Kirstetter, Pierre-Emmanuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03
cites cdi_FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03
container_end_page 27
container_issue 1-2
container_start_page 17
container_title Journal of hydrology (Amsterdam)
container_volume 394
creator Bouilloud, Ludovic
Delrieu, Guy
Boudevillain, Brice
Kirstetter, Pierre-Emmanuel
description A method to estimate rainfall from radar data for post-event analysis of flash-flood events has been developed within the EC-funded HYDRATE project. It follows a pragmatic approach including careful analysis of the observation conditions for the radar system(s) available for the considered case. Clutter and beam blockage are characterised by dry-weather observations and simulations based on a digital terrain model of the region of interest. The vertical profile of reflectivity (VPR) is either inferred from radar data if volume scanning data are available or simply defined using basic meteorological parameters (idealised VPR). Such information is then used to produce correction factor maps for each elevation angle to correct for range-dependent errors. In a second step, an effective Z–R relationship is optimised to remove the bias over the hit region. Due to limited data availability, the optimisation is carried out with reference to raingauge rain amounts measured at the event time scale. Sensitivity tests performed with two well-documented rain events show that a number of Z=aRb relationships, organised along hyperbolic curves in the (a and b) parameter space, lead to optimum assessment results in terms of the Nash coefficient between the radar and raingauge estimates. A refined analysis of these equifinality patterns shows that the “total additive conditional bias” can be used to discriminate between the Nash coefficient equifinal solutions. We observe that the optimisation results are sensitive to the VPR description and also that the Z–R optimisation procedure can largely compensate for range-dependent errors, although this shifts the optimal coefficients in the parameter space. The time-scale dependency of the equifinality patterns is significant, however near-optimal Z–R relationships can be obtained at all time scales from the event time step optimisation.
doi_str_mv 10.1016/j.jhydrol.2010.02.035
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00562706v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410001241</els_id><sourcerecordid>815539397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03</originalsourceid><addsrcrecordid>eNqFkF2LEzEUhoMoWKs_QcydIEz3ZDKZmVzJsqgrFAS11-FMPmxKdlKTtNh_b-os3m5uAifPeU_OQ8hbBhsGrL85bA77i0kxbFqoNWg3wMUzsmLjIJt2gOE5WQG0bcN62b0kr3I-QD2cdyuy-44GE03oZ4chUJuLf8Di40z9TMveUh3nYv8UGh09xlwae7ZzoThjuGSfr2UXMO8bF2I09N9rfk1e1LRs3zzea7L7_Onn3X2z_fbl693ttsGu5aVhZuJsQsRuElIyaY1kMA7txB06yUw3Sq1t52AQnFup-VhZYSzgJLRwwNfkw5K7x6COqf48XVREr-5vt8rP-aQARF8V9GdW4fcLfEzx96kuqh581jYEnG08ZTUyIbjkcqikWEidYs7Juv_ZDNRVuTqoR-XqqlxBq6ry2vdu6XMYFf5KPqvdjwpwYBL6vi6xJh8XwlYrZ2-TytrbWVvjk9VFmeifmPEXG-mW7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815539397</pqid></control><display><type>article</type><title>Radar rainfall estimation in the context of post-event analysis of flash-flood events</title><source>ScienceDirect Journals</source><creator>Bouilloud, Ludovic ; Delrieu, Guy ; Boudevillain, Brice ; Kirstetter, Pierre-Emmanuel</creator><creatorcontrib>Bouilloud, Ludovic ; Delrieu, Guy ; Boudevillain, Brice ; Kirstetter, Pierre-Emmanuel</creatorcontrib><description>A method to estimate rainfall from radar data for post-event analysis of flash-flood events has been developed within the EC-funded HYDRATE project. It follows a pragmatic approach including careful analysis of the observation conditions for the radar system(s) available for the considered case. Clutter and beam blockage are characterised by dry-weather observations and simulations based on a digital terrain model of the region of interest. The vertical profile of reflectivity (VPR) is either inferred from radar data if volume scanning data are available or simply defined using basic meteorological parameters (idealised VPR). Such information is then used to produce correction factor maps for each elevation angle to correct for range-dependent errors. In a second step, an effective Z–R relationship is optimised to remove the bias over the hit region. Due to limited data availability, the optimisation is carried out with reference to raingauge rain amounts measured at the event time scale. Sensitivity tests performed with two well-documented rain events show that a number of Z=aRb relationships, organised along hyperbolic curves in the (a and b) parameter space, lead to optimum assessment results in terms of the Nash coefficient between the radar and raingauge estimates. A refined analysis of these equifinality patterns shows that the “total additive conditional bias” can be used to discriminate between the Nash coefficient equifinal solutions. We observe that the optimisation results are sensitive to the VPR description and also that the Z–R optimisation procedure can largely compensate for range-dependent errors, although this shifts the optimal coefficients in the parameter space. The time-scale dependency of the equifinality patterns is significant, however near-optimal Z–R relationships can be obtained at all time scales from the event time step optimisation.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.02.035</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coefficients ; Earth Sciences ; Estimates ; Extreme rainfall events ; Flash-floods ; Mathematical models ; Meteorology ; Optimization ; Radar ; Radar data ; Radar quantitative precipitation estimation ; Rain ; Rainfall ; Sciences of the Universe</subject><ispartof>Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.17-27</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03</citedby><cites>FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03</cites><orcidid>0000-0002-1771-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-00562706$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouilloud, Ludovic</creatorcontrib><creatorcontrib>Delrieu, Guy</creatorcontrib><creatorcontrib>Boudevillain, Brice</creatorcontrib><creatorcontrib>Kirstetter, Pierre-Emmanuel</creatorcontrib><title>Radar rainfall estimation in the context of post-event analysis of flash-flood events</title><title>Journal of hydrology (Amsterdam)</title><description>A method to estimate rainfall from radar data for post-event analysis of flash-flood events has been developed within the EC-funded HYDRATE project. It follows a pragmatic approach including careful analysis of the observation conditions for the radar system(s) available for the considered case. Clutter and beam blockage are characterised by dry-weather observations and simulations based on a digital terrain model of the region of interest. The vertical profile of reflectivity (VPR) is either inferred from radar data if volume scanning data are available or simply defined using basic meteorological parameters (idealised VPR). Such information is then used to produce correction factor maps for each elevation angle to correct for range-dependent errors. In a second step, an effective Z–R relationship is optimised to remove the bias over the hit region. Due to limited data availability, the optimisation is carried out with reference to raingauge rain amounts measured at the event time scale. Sensitivity tests performed with two well-documented rain events show that a number of Z=aRb relationships, organised along hyperbolic curves in the (a and b) parameter space, lead to optimum assessment results in terms of the Nash coefficient between the radar and raingauge estimates. A refined analysis of these equifinality patterns shows that the “total additive conditional bias” can be used to discriminate between the Nash coefficient equifinal solutions. We observe that the optimisation results are sensitive to the VPR description and also that the Z–R optimisation procedure can largely compensate for range-dependent errors, although this shifts the optimal coefficients in the parameter space. The time-scale dependency of the equifinality patterns is significant, however near-optimal Z–R relationships can be obtained at all time scales from the event time step optimisation.</description><subject>Coefficients</subject><subject>Earth Sciences</subject><subject>Estimates</subject><subject>Extreme rainfall events</subject><subject>Flash-floods</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Optimization</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar quantitative precipitation estimation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Sciences of the Universe</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkF2LEzEUhoMoWKs_QcydIEz3ZDKZmVzJsqgrFAS11-FMPmxKdlKTtNh_b-os3m5uAifPeU_OQ8hbBhsGrL85bA77i0kxbFqoNWg3wMUzsmLjIJt2gOE5WQG0bcN62b0kr3I-QD2cdyuy-44GE03oZ4chUJuLf8Di40z9TMveUh3nYv8UGh09xlwae7ZzoThjuGSfr2UXMO8bF2I09N9rfk1e1LRs3zzea7L7_Onn3X2z_fbl693ttsGu5aVhZuJsQsRuElIyaY1kMA7txB06yUw3Sq1t52AQnFup-VhZYSzgJLRwwNfkw5K7x6COqf48XVREr-5vt8rP-aQARF8V9GdW4fcLfEzx96kuqh581jYEnG08ZTUyIbjkcqikWEidYs7Juv_ZDNRVuTqoR-XqqlxBq6ry2vdu6XMYFf5KPqvdjwpwYBL6vi6xJh8XwlYrZ2-TytrbWVvjk9VFmeifmPEXG-mW7g</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Bouilloud, Ludovic</creator><creator>Delrieu, Guy</creator><creator>Boudevillain, Brice</creator><creator>Kirstetter, Pierre-Emmanuel</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1771-4953</orcidid></search><sort><creationdate>20101117</creationdate><title>Radar rainfall estimation in the context of post-event analysis of flash-flood events</title><author>Bouilloud, Ludovic ; Delrieu, Guy ; Boudevillain, Brice ; Kirstetter, Pierre-Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coefficients</topic><topic>Earth Sciences</topic><topic>Estimates</topic><topic>Extreme rainfall events</topic><topic>Flash-floods</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Optimization</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar quantitative precipitation estimation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouilloud, Ludovic</creatorcontrib><creatorcontrib>Delrieu, Guy</creatorcontrib><creatorcontrib>Boudevillain, Brice</creatorcontrib><creatorcontrib>Kirstetter, Pierre-Emmanuel</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouilloud, Ludovic</au><au>Delrieu, Guy</au><au>Boudevillain, Brice</au><au>Kirstetter, Pierre-Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar rainfall estimation in the context of post-event analysis of flash-flood events</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-11-17</date><risdate>2010</risdate><volume>394</volume><issue>1-2</issue><spage>17</spage><epage>27</epage><pages>17-27</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>A method to estimate rainfall from radar data for post-event analysis of flash-flood events has been developed within the EC-funded HYDRATE project. It follows a pragmatic approach including careful analysis of the observation conditions for the radar system(s) available for the considered case. Clutter and beam blockage are characterised by dry-weather observations and simulations based on a digital terrain model of the region of interest. The vertical profile of reflectivity (VPR) is either inferred from radar data if volume scanning data are available or simply defined using basic meteorological parameters (idealised VPR). Such information is then used to produce correction factor maps for each elevation angle to correct for range-dependent errors. In a second step, an effective Z–R relationship is optimised to remove the bias over the hit region. Due to limited data availability, the optimisation is carried out with reference to raingauge rain amounts measured at the event time scale. Sensitivity tests performed with two well-documented rain events show that a number of Z=aRb relationships, organised along hyperbolic curves in the (a and b) parameter space, lead to optimum assessment results in terms of the Nash coefficient between the radar and raingauge estimates. A refined analysis of these equifinality patterns shows that the “total additive conditional bias” can be used to discriminate between the Nash coefficient equifinal solutions. We observe that the optimisation results are sensitive to the VPR description and also that the Z–R optimisation procedure can largely compensate for range-dependent errors, although this shifts the optimal coefficients in the parameter space. The time-scale dependency of the equifinality patterns is significant, however near-optimal Z–R relationships can be obtained at all time scales from the event time step optimisation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.02.035</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1771-4953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2010-11, Vol.394 (1-2), p.17-27
issn 0022-1694
1879-2707
language eng
recordid cdi_hal_primary_oai_HAL_insu_00562706v1
source ScienceDirect Journals
subjects Coefficients
Earth Sciences
Estimates
Extreme rainfall events
Flash-floods
Mathematical models
Meteorology
Optimization
Radar
Radar data
Radar quantitative precipitation estimation
Rain
Rainfall
Sciences of the Universe
title Radar rainfall estimation in the context of post-event analysis of flash-flood events
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar%20rainfall%20estimation%20in%20the%20context%20of%20post-event%20analysis%20of%20flash-flood%20events&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Bouilloud,%20Ludovic&rft.date=2010-11-17&rft.volume=394&rft.issue=1-2&rft.spage=17&rft.epage=27&rft.pages=17-27&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2010.02.035&rft_dat=%3Cproquest_hal_p%3E815539397%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-1db31baaa4b59919ed910872b3faf91d489cce4f07533e9c38aaa5de0ab5c5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=815539397&rft_id=info:pmid/&rfr_iscdi=true