Loading…

Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification

Nonuniform beam filling associated with the vertical variation of atmospheric reflectivity is an important source of error in the estimation of rainfall rates by radar. It is, however, possible to correct for this error if the vertical profile of reflectivity (VPR) is known. This paper presents a me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2010-10, Vol.49 (10), p.2167-2180
Main Authors: Kirstetter, Pierre-Emmanuel, Andrieu, Hervé, Delrieu, Guy, Boudevillain, Brice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243
cites cdi_FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243
container_end_page 2180
container_issue 10
container_start_page 2167
container_title Journal of applied meteorology and climatology
container_volume 49
creator Kirstetter, Pierre-Emmanuel
Andrieu, Hervé
Delrieu, Guy
Boudevillain, Brice
description Nonuniform beam filling associated with the vertical variation of atmospheric reflectivity is an important source of error in the estimation of rainfall rates by radar. It is, however, possible to correct for this error if the vertical profile of reflectivity (VPR) is known. This paper presents a method for identifying VPRs from volumetric radar data. The method aims at improving an existing algorithm based on the analysis of ratios of radar measurements at multiple elevation angles. By adding a rainfall classification procedure defining more homogeneous precipitation patterns, the issue of VPR homogeneity is specifically addressed. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The identified VPR is more representative of the rain field than are other estimated VPRs. It has also a positive impact on radar data processing for precipitation estimation: while scatter remains unchanged, an overall bias reduction at all time steps is noticed (up to 6% for all events) whereas performance varies with type of events considered (mesoscale convective systems, cold fronts, or shallow convection) according to the radar-observation conditions. This is attributed to the better processing of spatial variations of the vertical profile of reflectivity for the stratiform regions. However, adaptation of the VPR identification in the difficult radar measurement context in mountainous areas and to the rainfall classification procedure proved challenging because of data fluctuations.
doi_str_mv 10.1175/2010jamc2369.1
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00564401v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26173973</jstor_id><sourcerecordid>26173973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxRtRcF29ehOCIoIwY77TfRzaj10ZURbXa6hOJ5oh01mT9ML896aZYQTBU5KXX72q4jXNc4LXhCjxjmKCd7A3lMluTR40F0SIdtVyRh-e75Q_bp7kvMOYc6XERXO4Hu1UvPMGio8Tig79sKnUZ0DfUnQ-2LyIN9YFa4q_9-WAXEyojyktwqkmhnlvS_IG3cAICb2HAug2--lnFfzkIATUB8j53Opp86iq2T47nZfN7ccP3_ur1fbrp-t-s10ZQbqyYkxhYIOlsmMOMymUYuPQSbAKHB6dEBwTM2BOaOeMcwNr-UDBgOCjrPuyy-bt0fcXBH2X_B7SQUfw-mqz1X7Ks8ZYSF5d7kmF3xzhuxR_zzYXvffZ2BBgsnHOusWKtgtfyZf_kLs4p6luopVopWCKqwq9-h9EWyoEbTu1WK2PlEkx52TdeUyC9RKtXqL9vPnSL9HqZcrXJ1vINSiXYDI-n6soY4RRiSv34sjtconp778kinWKsT8H96yB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825528976</pqid></control><display><type>article</type><title>Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kirstetter, Pierre-Emmanuel ; Andrieu, Hervé ; Delrieu, Guy ; Boudevillain, Brice</creator><creatorcontrib>Kirstetter, Pierre-Emmanuel ; Andrieu, Hervé ; Delrieu, Guy ; Boudevillain, Brice</creatorcontrib><description>Nonuniform beam filling associated with the vertical variation of atmospheric reflectivity is an important source of error in the estimation of rainfall rates by radar. It is, however, possible to correct for this error if the vertical profile of reflectivity (VPR) is known. This paper presents a method for identifying VPRs from volumetric radar data. The method aims at improving an existing algorithm based on the analysis of ratios of radar measurements at multiple elevation angles. By adding a rainfall classification procedure defining more homogeneous precipitation patterns, the issue of VPR homogeneity is specifically addressed. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The identified VPR is more representative of the rain field than are other estimated VPRs. It has also a positive impact on radar data processing for precipitation estimation: while scatter remains unchanged, an overall bias reduction at all time steps is noticed (up to 6% for all events) whereas performance varies with type of events considered (mesoscale convective systems, cold fronts, or shallow convection) according to the radar-observation conditions. This is attributed to the better processing of spatial variations of the vertical profile of reflectivity for the stratiform regions. However, adaptation of the VPR identification in the difficult radar measurement context in mountainous areas and to the rainfall classification procedure proved challenging because of data fluctuations.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/2010jamc2369.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>A priori knowledge ; Algorithms ; Altitude ; Classification ; Cold front ; Cold fronts ; Convection ; Data analysis ; Data processing ; Decision trees ; Earth Sciences ; Earth, ocean, space ; Error correction ; Exact sciences and technology ; External geophysics ; Fronts ; Homogeneity ; Identification ; Information processing ; Mesoscale convective systems ; Meteorology ; Methods ; Mountain regions ; Mountainous areas ; NOTES AND CORRESPONDENCE ; Pixels ; Precipitation ; Precipitation estimation ; Precipitation patterns ; Procedures ; Radar ; Radar data ; Radar echoes ; Radar measurement ; Rain ; Rainfall ; Rainfall rate ; Ratios ; Reflectance ; Sciences of the Universe ; Spatial variations ; Vertical profiles</subject><ispartof>Journal of applied meteorology and climatology, 2010-10, Vol.49 (10), p.2167-2180</ispartof><rights>2010 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2010</rights><rights>Copyright American Meteorological Society Oct 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243</citedby><cites>FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243</cites><orcidid>0000-0002-1771-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26173973$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26173973$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23313260$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00564401$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirstetter, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Andrieu, Hervé</creatorcontrib><creatorcontrib>Delrieu, Guy</creatorcontrib><creatorcontrib>Boudevillain, Brice</creatorcontrib><title>Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification</title><title>Journal of applied meteorology and climatology</title><description>Nonuniform beam filling associated with the vertical variation of atmospheric reflectivity is an important source of error in the estimation of rainfall rates by radar. It is, however, possible to correct for this error if the vertical profile of reflectivity (VPR) is known. This paper presents a method for identifying VPRs from volumetric radar data. The method aims at improving an existing algorithm based on the analysis of ratios of radar measurements at multiple elevation angles. By adding a rainfall classification procedure defining more homogeneous precipitation patterns, the issue of VPR homogeneity is specifically addressed. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The identified VPR is more representative of the rain field than are other estimated VPRs. It has also a positive impact on radar data processing for precipitation estimation: while scatter remains unchanged, an overall bias reduction at all time steps is noticed (up to 6% for all events) whereas performance varies with type of events considered (mesoscale convective systems, cold fronts, or shallow convection) according to the radar-observation conditions. This is attributed to the better processing of spatial variations of the vertical profile of reflectivity for the stratiform regions. However, adaptation of the VPR identification in the difficult radar measurement context in mountainous areas and to the rainfall classification procedure proved challenging because of data fluctuations.</description><subject>A priori knowledge</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Classification</subject><subject>Cold front</subject><subject>Cold fronts</subject><subject>Convection</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fronts</subject><subject>Homogeneity</subject><subject>Identification</subject><subject>Information processing</subject><subject>Mesoscale convective systems</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>NOTES AND CORRESPONDENCE</subject><subject>Pixels</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation patterns</subject><subject>Procedures</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar echoes</subject><subject>Radar measurement</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall rate</subject><subject>Ratios</subject><subject>Reflectance</subject><subject>Sciences of the Universe</subject><subject>Spatial variations</subject><subject>Vertical profiles</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc2LFDEQxRtRcF29ehOCIoIwY77TfRzaj10ZURbXa6hOJ5oh01mT9ML896aZYQTBU5KXX72q4jXNc4LXhCjxjmKCd7A3lMluTR40F0SIdtVyRh-e75Q_bp7kvMOYc6XERXO4Hu1UvPMGio8Tig79sKnUZ0DfUnQ-2LyIN9YFa4q_9-WAXEyojyktwqkmhnlvS_IG3cAICb2HAug2--lnFfzkIATUB8j53Opp86iq2T47nZfN7ccP3_ur1fbrp-t-s10ZQbqyYkxhYIOlsmMOMymUYuPQSbAKHB6dEBwTM2BOaOeMcwNr-UDBgOCjrPuyy-bt0fcXBH2X_B7SQUfw-mqz1X7Ks8ZYSF5d7kmF3xzhuxR_zzYXvffZ2BBgsnHOusWKtgtfyZf_kLs4p6luopVopWCKqwq9-h9EWyoEbTu1WK2PlEkx52TdeUyC9RKtXqL9vPnSL9HqZcrXJ1vINSiXYDI-n6soY4RRiSv34sjtconp778kinWKsT8H96yB</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kirstetter, Pierre-Emmanuel</creator><creator>Andrieu, Hervé</creator><creator>Delrieu, Guy</creator><creator>Boudevillain, Brice</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1771-4953</orcidid></search><sort><creationdate>20101001</creationdate><title>Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification</title><author>Kirstetter, Pierre-Emmanuel ; Andrieu, Hervé ; Delrieu, Guy ; Boudevillain, Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A priori knowledge</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Classification</topic><topic>Cold front</topic><topic>Cold fronts</topic><topic>Convection</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fronts</topic><topic>Homogeneity</topic><topic>Identification</topic><topic>Information processing</topic><topic>Mesoscale convective systems</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>NOTES AND CORRESPONDENCE</topic><topic>Pixels</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation patterns</topic><topic>Procedures</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar echoes</topic><topic>Radar measurement</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall rate</topic><topic>Ratios</topic><topic>Reflectance</topic><topic>Sciences of the Universe</topic><topic>Spatial variations</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirstetter, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Andrieu, Hervé</creatorcontrib><creatorcontrib>Delrieu, Guy</creatorcontrib><creatorcontrib>Boudevillain, Brice</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirstetter, Pierre-Emmanuel</au><au>Andrieu, Hervé</au><au>Delrieu, Guy</au><au>Boudevillain, Brice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>49</volume><issue>10</issue><spage>2167</spage><epage>2180</epage><pages>2167-2180</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>Nonuniform beam filling associated with the vertical variation of atmospheric reflectivity is an important source of error in the estimation of rainfall rates by radar. It is, however, possible to correct for this error if the vertical profile of reflectivity (VPR) is known. This paper presents a method for identifying VPRs from volumetric radar data. The method aims at improving an existing algorithm based on the analysis of ratios of radar measurements at multiple elevation angles. By adding a rainfall classification procedure defining more homogeneous precipitation patterns, the issue of VPR homogeneity is specifically addressed. The method is assessed using the dataset from a volume-scanning strategy for radar quantitative precipitation estimation designed in 2002 for the Bollène radar (France). The identified VPR is more representative of the rain field than are other estimated VPRs. It has also a positive impact on radar data processing for precipitation estimation: while scatter remains unchanged, an overall bias reduction at all time steps is noticed (up to 6% for all events) whereas performance varies with type of events considered (mesoscale convective systems, cold fronts, or shallow convection) according to the radar-observation conditions. This is attributed to the better processing of spatial variations of the vertical profile of reflectivity for the stratiform regions. However, adaptation of the VPR identification in the difficult radar measurement context in mountainous areas and to the rainfall classification procedure proved challenging because of data fluctuations.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jamc2369.1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1771-4953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2010-10, Vol.49 (10), p.2167-2180
issn 1558-8424
1558-8432
language eng
recordid cdi_hal_primary_oai_HAL_insu_00564401v1
source JSTOR Archival Journals and Primary Sources Collection
subjects A priori knowledge
Algorithms
Altitude
Classification
Cold front
Cold fronts
Convection
Data analysis
Data processing
Decision trees
Earth Sciences
Earth, ocean, space
Error correction
Exact sciences and technology
External geophysics
Fronts
Homogeneity
Identification
Information processing
Mesoscale convective systems
Meteorology
Methods
Mountain regions
Mountainous areas
NOTES AND CORRESPONDENCE
Pixels
Precipitation
Precipitation estimation
Precipitation patterns
Procedures
Radar
Radar data
Radar echoes
Radar measurement
Rain
Rainfall
Rainfall rate
Ratios
Reflectance
Sciences of the Universe
Spatial variations
Vertical profiles
title Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Vertical%20Profiles%20of%20Reflectivity%20for%20Correction%20of%20Volumetric%20Radar%20Data%20Using%20Rainfall%20Classification&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Kirstetter,%20Pierre-Emmanuel&rft.date=2010-10-01&rft.volume=49&rft.issue=10&rft.spage=2167&rft.epage=2180&rft.pages=2167-2180&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/2010jamc2369.1&rft_dat=%3Cjstor_hal_p%3E26173973%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-3370a3be2693f0365773db96ae7af0df55401cb04129fcffb384b2aca54d64243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825528976&rft_id=info:pmid/&rft_jstor_id=26173973&rfr_iscdi=true