Loading…
On the relationship between cycles of eruptive activity and growth of a volcanic edifice
The behaviour of a magma plumbing system during a cycle of volcanic edifice growth is investigated with a simple physical model. Loading by an edifice at Earth's surface changes stresses in the upper crust and pressures in a magma reservoir. In turn, these changes affect magma ascent from a dee...
Saved in:
Published in: | Journal of volcanology and geothermal research 2010-07, Vol.194 (4), p.150-164 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The behaviour of a magma plumbing system during a cycle of volcanic edifice growth is investigated with a simple physical model. Loading by an edifice at Earth's surface changes stresses in the upper crust and pressures in a magma reservoir. In turn, these changes affect magma ascent from a deep source to the reservoir and from reservoir to Earth's surface. The model plumbing system is such that a hydraulic connection is maintained at all times between the reservoir and a deep magma source at constant pressure. Consequently the input rate of magma into the reservoir is predicted by the model rather than imposed as an input parameter. The open hydraulic connection model is consistent with short-term measurements of deformation and seismicity at several active volcanoes. Threshold values for the reservoir pressure at the beginning and end of eruption evolve as the edifice grows and lead to long-term changes of eruption rate. Depending on the dimensions and depth of the reservoir, the eruption rate follows different trends as a function of time. For small reservoirs, the eruption rate initially increases as the edifice builds up and peaks at some value before going down. The edifice size at the peak eruption rate provides a constraint on the reservoir shape and depth. Edifice decay or destruction leads to resumption of eruptive activity and a new eruption cycle. A simple elastic model for country rock deformation is valid over a whole eruptive cycle extending to the cessation of eruptive activity. For large reservoirs, an elastic model is only valid over part of an eruptive cycle. Long-term stress changes eventually lead to reservoir instability in the form of either roof collapse and caldera formation or reservoir enlargement in the horizontal direction. |
---|---|
ISSN: | 0377-0273 1872-6097 |
DOI: | 10.1016/j.jvolgeores.2010.05.006 |