Loading…

How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?

Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2011-07, Vol.359 (1), p.75-85
Main Authors: Pédrot, Mathieu, Boudec, Ange Le, Davranche, Mélanie, Dia, Aline, Henin, Odile
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3
cites cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3
container_end_page 85
container_issue 1
container_start_page 75
container_title Journal of colloid and interface science
container_volume 359
creator Pédrot, Mathieu
Boudec, Ange Le
Davranche, Mélanie
Dia, Aline
Henin, Odile
description Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides. Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.
doi_str_mv 10.1016/j.jcis.2011.03.067
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00611750v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711003651</els_id><sourcerecordid>1671609075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</originalsourceid><addsrcrecordid>eNp9kdGK1DAUhoso7rj6Al5IbkQRW0_SpmlhQZbFdYQBb_Q6nCbpboZOMpukI-vTmzLjXO5VCHzn4_znL4q3FCoKtP2yrbbKxooBpRXUFbTiWbGi0PNSUKifFysARste9OKieBXjFjLIef-yuGC06VjD2lXxsPZ_iPYmEh_u0FlFdpiSCUR5F1NA60i6N8RhmoP5TKL9awg6TfCAdsLBTjY9Ej-S24Vxfo8hWTVl3egDGayf_J1VOJFg9KyS9e7r6-LFiFM0b07vZfH79tuvm3W5-fn9x831plQNr1Opa1SUNYhM1D1qHDrdDY1WfSeWwKrtR8ZroWEcqNBC6PwFrhgdccjpVX1ZfDp673GS-2B3GB6lRyvX1xtpXZwlQEup4HCgGf5whPfBP8wmJrmzUZlpQmf8HGXXNqLjrGeZ_PgkSVtBW-hB8IyyI6qCjzGY8bwGBbk0KLdyaVAugSTUMjeYh96d_POwM_o88r-yDLw_ARjzZceAbnGcuYbyDtgiujpyJh_5YE2QUVnjlNE2GJWk9vapPf4B-lO5qQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671609075</pqid></control><display><type>article</type><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><source>Elsevier</source><creator>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</creator><creatorcontrib>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</creatorcontrib><description>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides. Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.03.067</identifier><identifier>PMID: 21482426</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Bacteria ; Benzopyrans - chemistry ; Benzopyrans - metabolism ; Bioreduction ; Chemistry ; Colloidal state and disperse state ; Colloids ; Colloids - chemistry ; Colloids - metabolism ; Earth Sciences ; Environmental Sciences ; Exact sciences and technology ; Fe nanoparticles ; General and physical chemistry ; Geochemistry ; Global Changes ; Humic Substances ; Hydrogen-Ion Concentration ; Hydroxyapatite ; Iron ; Iron - chemistry ; Iron - metabolism ; Nanomaterials ; Nanoparticles ; Nanostructure ; Oxidation-hydrolysis reaction ; Oxidation-Reduction ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Reduction ; Sciences of the Universe ; Shewanella putrefaciens ; Shewanella putrefaciens - chemistry ; Shewanella putrefaciens - metabolism ; Surface Properties</subject><ispartof>Journal of colloid and interface science, 2011-07, Vol.359 (1), p.75-85</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</citedby><cites>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</cites><orcidid>0000-0002-6175-4661 ; 0000-0001-5215-3808 ; 0000-0001-5544-1944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24158027$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21482426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00611750$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pédrot, Mathieu</creatorcontrib><creatorcontrib>Boudec, Ange Le</creatorcontrib><creatorcontrib>Davranche, Mélanie</creatorcontrib><creatorcontrib>Dia, Aline</creatorcontrib><creatorcontrib>Henin, Odile</creatorcontrib><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides. Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</description><subject>Bacteria</subject><subject>Benzopyrans - chemistry</subject><subject>Benzopyrans - metabolism</subject><subject>Bioreduction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Colloids - metabolism</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fe nanoparticles</subject><subject>General and physical chemistry</subject><subject>Geochemistry</subject><subject>Global Changes</subject><subject>Humic Substances</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxyapatite</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Oxidation-hydrolysis reaction</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Reduction</subject><subject>Sciences of the Universe</subject><subject>Shewanella putrefaciens</subject><subject>Shewanella putrefaciens - chemistry</subject><subject>Shewanella putrefaciens - metabolism</subject><subject>Surface Properties</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kdGK1DAUhoso7rj6Al5IbkQRW0_SpmlhQZbFdYQBb_Q6nCbpboZOMpukI-vTmzLjXO5VCHzn4_znL4q3FCoKtP2yrbbKxooBpRXUFbTiWbGi0PNSUKifFysARste9OKieBXjFjLIef-yuGC06VjD2lXxsPZ_iPYmEh_u0FlFdpiSCUR5F1NA60i6N8RhmoP5TKL9awg6TfCAdsLBTjY9Ej-S24Vxfo8hWTVl3egDGayf_J1VOJFg9KyS9e7r6-LFiFM0b07vZfH79tuvm3W5-fn9x831plQNr1Opa1SUNYhM1D1qHDrdDY1WfSeWwKrtR8ZroWEcqNBC6PwFrhgdccjpVX1ZfDp673GS-2B3GB6lRyvX1xtpXZwlQEup4HCgGf5whPfBP8wmJrmzUZlpQmf8HGXXNqLjrGeZ_PgkSVtBW-hB8IyyI6qCjzGY8bwGBbk0KLdyaVAugSTUMjeYh96d_POwM_o88r-yDLw_ARjzZceAbnGcuYbyDtgiujpyJh_5YE2QUVnjlNE2GJWk9vapPf4B-lO5qQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Pédrot, Mathieu</creator><creator>Boudec, Ange Le</creator><creator>Davranche, Mélanie</creator><creator>Dia, Aline</creator><creator>Henin, Odile</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6175-4661</orcidid><orcidid>https://orcid.org/0000-0001-5215-3808</orcidid><orcidid>https://orcid.org/0000-0001-5544-1944</orcidid></search><sort><creationdate>20110701</creationdate><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><author>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Benzopyrans - chemistry</topic><topic>Benzopyrans - metabolism</topic><topic>Bioreduction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Colloids - metabolism</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fe nanoparticles</topic><topic>General and physical chemistry</topic><topic>Geochemistry</topic><topic>Global Changes</topic><topic>Humic Substances</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxyapatite</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Oxidation-hydrolysis reaction</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Reduction</topic><topic>Sciences of the Universe</topic><topic>Shewanella putrefaciens</topic><topic>Shewanella putrefaciens - chemistry</topic><topic>Shewanella putrefaciens - metabolism</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pédrot, Mathieu</creatorcontrib><creatorcontrib>Boudec, Ange Le</creatorcontrib><creatorcontrib>Davranche, Mélanie</creatorcontrib><creatorcontrib>Dia, Aline</creatorcontrib><creatorcontrib>Henin, Odile</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pédrot, Mathieu</au><au>Boudec, Ange Le</au><au>Davranche, Mélanie</au><au>Dia, Aline</au><au>Henin, Odile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>359</volume><issue>1</issue><spage>75</spage><epage>85</epage><pages>75-85</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides. Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21482426</pmid><doi>10.1016/j.jcis.2011.03.067</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6175-4661</orcidid><orcidid>https://orcid.org/0000-0001-5215-3808</orcidid><orcidid>https://orcid.org/0000-0001-5544-1944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2011-07, Vol.359 (1), p.75-85
issn 0021-9797
1095-7103
language eng
recordid cdi_hal_primary_oai_HAL_insu_00611750v1
source Elsevier
subjects Bacteria
Benzopyrans - chemistry
Benzopyrans - metabolism
Bioreduction
Chemistry
Colloidal state and disperse state
Colloids
Colloids - chemistry
Colloids - metabolism
Earth Sciences
Environmental Sciences
Exact sciences and technology
Fe nanoparticles
General and physical chemistry
Geochemistry
Global Changes
Humic Substances
Hydrogen-Ion Concentration
Hydroxyapatite
Iron
Iron - chemistry
Iron - metabolism
Nanomaterials
Nanoparticles
Nanostructure
Oxidation-hydrolysis reaction
Oxidation-Reduction
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Reduction
Sciences of the Universe
Shewanella putrefaciens
Shewanella putrefaciens - chemistry
Shewanella putrefaciens - metabolism
Surface Properties
title How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20does%20organic%20matter%20constrain%20the%20nature,%20size%20and%20availability%20of%20Fe%20nanoparticles%20for%20biological%20reduction?&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=P%C3%A9drot,%20Mathieu&rft.date=2011-07-01&rft.volume=359&rft.issue=1&rft.spage=75&rft.epage=85&rft.pages=75-85&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.03.067&rft_dat=%3Cproquest_hal_p%3E1671609075%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671609075&rft_id=info:pmid/21482426&rfr_iscdi=true