Loading…
How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted] ► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent o...
Saved in:
Published in: | Journal of colloid and interface science 2011-07, Vol.359 (1), p.75-85 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3 |
container_end_page | 85 |
container_issue | 1 |
container_start_page | 75 |
container_title | Journal of colloid and interface science |
container_volume | 359 |
creator | Pédrot, Mathieu Boudec, Ange Le Davranche, Mélanie Dia, Aline Henin, Odile |
description | Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted]
► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides.
Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles.
Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides. |
doi_str_mv | 10.1016/j.jcis.2011.03.067 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_00611750v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711003651</els_id><sourcerecordid>1671609075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</originalsourceid><addsrcrecordid>eNp9kdGK1DAUhoso7rj6Al5IbkQRW0_SpmlhQZbFdYQBb_Q6nCbpboZOMpukI-vTmzLjXO5VCHzn4_znL4q3FCoKtP2yrbbKxooBpRXUFbTiWbGi0PNSUKifFysARste9OKieBXjFjLIef-yuGC06VjD2lXxsPZ_iPYmEh_u0FlFdpiSCUR5F1NA60i6N8RhmoP5TKL9awg6TfCAdsLBTjY9Ej-S24Vxfo8hWTVl3egDGayf_J1VOJFg9KyS9e7r6-LFiFM0b07vZfH79tuvm3W5-fn9x831plQNr1Opa1SUNYhM1D1qHDrdDY1WfSeWwKrtR8ZroWEcqNBC6PwFrhgdccjpVX1ZfDp673GS-2B3GB6lRyvX1xtpXZwlQEup4HCgGf5whPfBP8wmJrmzUZlpQmf8HGXXNqLjrGeZ_PgkSVtBW-hB8IyyI6qCjzGY8bwGBbk0KLdyaVAugSTUMjeYh96d_POwM_o88r-yDLw_ARjzZceAbnGcuYbyDtgiujpyJh_5YE2QUVnjlNE2GJWk9vapPf4B-lO5qQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671609075</pqid></control><display><type>article</type><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><source>Elsevier</source><creator>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</creator><creatorcontrib>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</creatorcontrib><description>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted]
► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides.
Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles.
Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.03.067</identifier><identifier>PMID: 21482426</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Bacteria ; Benzopyrans - chemistry ; Benzopyrans - metabolism ; Bioreduction ; Chemistry ; Colloidal state and disperse state ; Colloids ; Colloids - chemistry ; Colloids - metabolism ; Earth Sciences ; Environmental Sciences ; Exact sciences and technology ; Fe nanoparticles ; General and physical chemistry ; Geochemistry ; Global Changes ; Humic Substances ; Hydrogen-Ion Concentration ; Hydroxyapatite ; Iron ; Iron - chemistry ; Iron - metabolism ; Nanomaterials ; Nanoparticles ; Nanostructure ; Oxidation-hydrolysis reaction ; Oxidation-Reduction ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Reduction ; Sciences of the Universe ; Shewanella putrefaciens ; Shewanella putrefaciens - chemistry ; Shewanella putrefaciens - metabolism ; Surface Properties</subject><ispartof>Journal of colloid and interface science, 2011-07, Vol.359 (1), p.75-85</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</citedby><cites>FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</cites><orcidid>0000-0002-6175-4661 ; 0000-0001-5215-3808 ; 0000-0001-5544-1944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24158027$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21482426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-00611750$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pédrot, Mathieu</creatorcontrib><creatorcontrib>Boudec, Ange Le</creatorcontrib><creatorcontrib>Davranche, Mélanie</creatorcontrib><creatorcontrib>Dia, Aline</creatorcontrib><creatorcontrib>Henin, Odile</creatorcontrib><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted]
► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides.
Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles.
Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</description><subject>Bacteria</subject><subject>Benzopyrans - chemistry</subject><subject>Benzopyrans - metabolism</subject><subject>Bioreduction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Colloids - metabolism</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fe nanoparticles</subject><subject>General and physical chemistry</subject><subject>Geochemistry</subject><subject>Global Changes</subject><subject>Humic Substances</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxyapatite</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Oxidation-hydrolysis reaction</subject><subject>Oxidation-Reduction</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Reduction</subject><subject>Sciences of the Universe</subject><subject>Shewanella putrefaciens</subject><subject>Shewanella putrefaciens - chemistry</subject><subject>Shewanella putrefaciens - metabolism</subject><subject>Surface Properties</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kdGK1DAUhoso7rj6Al5IbkQRW0_SpmlhQZbFdYQBb_Q6nCbpboZOMpukI-vTmzLjXO5VCHzn4_znL4q3FCoKtP2yrbbKxooBpRXUFbTiWbGi0PNSUKifFysARste9OKieBXjFjLIef-yuGC06VjD2lXxsPZ_iPYmEh_u0FlFdpiSCUR5F1NA60i6N8RhmoP5TKL9awg6TfCAdsLBTjY9Ej-S24Vxfo8hWTVl3egDGayf_J1VOJFg9KyS9e7r6-LFiFM0b07vZfH79tuvm3W5-fn9x831plQNr1Opa1SUNYhM1D1qHDrdDY1WfSeWwKrtR8ZroWEcqNBC6PwFrhgdccjpVX1ZfDp673GS-2B3GB6lRyvX1xtpXZwlQEup4HCgGf5whPfBP8wmJrmzUZlpQmf8HGXXNqLjrGeZ_PgkSVtBW-hB8IyyI6qCjzGY8bwGBbk0KLdyaVAugSTUMjeYh96d_POwM_o88r-yDLw_ARjzZceAbnGcuYbyDtgiujpyJh_5YE2QUVnjlNE2GJWk9vapPf4B-lO5qQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Pédrot, Mathieu</creator><creator>Boudec, Ange Le</creator><creator>Davranche, Mélanie</creator><creator>Dia, Aline</creator><creator>Henin, Odile</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6175-4661</orcidid><orcidid>https://orcid.org/0000-0001-5215-3808</orcidid><orcidid>https://orcid.org/0000-0001-5544-1944</orcidid></search><sort><creationdate>20110701</creationdate><title>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</title><author>Pédrot, Mathieu ; Boudec, Ange Le ; Davranche, Mélanie ; Dia, Aline ; Henin, Odile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Benzopyrans - chemistry</topic><topic>Benzopyrans - metabolism</topic><topic>Bioreduction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Colloids - metabolism</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fe nanoparticles</topic><topic>General and physical chemistry</topic><topic>Geochemistry</topic><topic>Global Changes</topic><topic>Humic Substances</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxyapatite</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Oxidation-hydrolysis reaction</topic><topic>Oxidation-Reduction</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Reduction</topic><topic>Sciences of the Universe</topic><topic>Shewanella putrefaciens</topic><topic>Shewanella putrefaciens - chemistry</topic><topic>Shewanella putrefaciens - metabolism</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pédrot, Mathieu</creatorcontrib><creatorcontrib>Boudec, Ange Le</creatorcontrib><creatorcontrib>Davranche, Mélanie</creatorcontrib><creatorcontrib>Dia, Aline</creatorcontrib><creatorcontrib>Henin, Odile</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pédrot, Mathieu</au><au>Boudec, Ange Le</au><au>Davranche, Mélanie</au><au>Dia, Aline</au><au>Henin, Odile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>359</volume><issue>1</issue><spage>75</spage><epage>85</epage><pages>75-85</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>Transmission electron microscopy micrographs of Fe nanoparticles: (a) and (b) correspond to pure Fe system; whereas (c) and (d) correspond to Fe–HA system. [Display omitted]
► New data demonstrating the impact of HS on the formation and reactivity of Fe oxides. ► Humic substances reduce the extent of the Fe oxidation-hydrolysis reaction. ► Humic substance directly impact the size and the nature of formed Fe oxides. ► A fraction of Fe does not contribute to the genesis of nanoparticles. ► Mixed Fe nanoparticles-organic colloids are much more bioavailable than Fe oxides.
Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid – HA and fulvic acid – FA). Without HS, micronic aggregates (0.1–1μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles.
Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21482426</pmid><doi>10.1016/j.jcis.2011.03.067</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6175-4661</orcidid><orcidid>https://orcid.org/0000-0001-5215-3808</orcidid><orcidid>https://orcid.org/0000-0001-5544-1944</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2011-07, Vol.359 (1), p.75-85 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_00611750v1 |
source | Elsevier |
subjects | Bacteria Benzopyrans - chemistry Benzopyrans - metabolism Bioreduction Chemistry Colloidal state and disperse state Colloids Colloids - chemistry Colloids - metabolism Earth Sciences Environmental Sciences Exact sciences and technology Fe nanoparticles General and physical chemistry Geochemistry Global Changes Humic Substances Hydrogen-Ion Concentration Hydroxyapatite Iron Iron - chemistry Iron - metabolism Nanomaterials Nanoparticles Nanostructure Oxidation-hydrolysis reaction Oxidation-Reduction Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Reduction Sciences of the Universe Shewanella putrefaciens Shewanella putrefaciens - chemistry Shewanella putrefaciens - metabolism Surface Properties |
title | How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20does%20organic%20matter%20constrain%20the%20nature,%20size%20and%20availability%20of%20Fe%20nanoparticles%20for%20biological%20reduction?&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=P%C3%A9drot,%20Mathieu&rft.date=2011-07-01&rft.volume=359&rft.issue=1&rft.spage=75&rft.epage=85&rft.pages=75-85&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.03.067&rft_dat=%3Cproquest_hal_p%3E1671609075%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-d3ac124aa2739adab8d8b4dc9872011c69f2537d0fb17d77df2505c21fab103c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671609075&rft_id=info:pmid/21482426&rfr_iscdi=true |