Loading…

Crustal differentiation in the early solar system: Clues from the unique achondrite Northwest Africa 7325 (NWA 7325)

The unique achondrite NWA 7325 is an unusual olivine gabbro composed chiefly of calcic plagioclase (An85–93), diopsidic pyroxene (En50.1–54.0 Wo44.8–49.3 Fs0.6–1.3), and forsteritic olivine (Fo97). It is Al and Mg-rich and Fe and Na-poor and displays very low concentrations of incompatible trace ele...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2015-11, Vol.168, p.280-292
Main Authors: Barrat, J.A., Greenwood, R.C., Verchovsky, A.B., Gillet, Ph, Bollinger, C., Langlade, J.A., Liorzou, C., Franchi, I.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The unique achondrite NWA 7325 is an unusual olivine gabbro composed chiefly of calcic plagioclase (An85–93), diopsidic pyroxene (En50.1–54.0 Wo44.8–49.3 Fs0.6–1.3), and forsteritic olivine (Fo97). It is Al and Mg-rich and Fe and Na-poor and displays very low concentrations of incompatible trace elements, much below 0.3×CI abundances for many of them. It is also characterized by huge Eu and Sr anomalies (Eu/Eu∗=65, Srn/Cen=240). Although the O isotopic composition of NWA 7325 and some ureilites (those with olivine cores in the range Fo75–Fo88) are similar, a genetic relationship between them is unlikely due to the Fe-poor composition of NWA 7325. It is almost certainly derived from a distinct planetesimal, not previously sampled by other achondrites. The low Na/Al, Ga/Al, Zn/Al ratios as well as the low K, Rb and Cs shown by NWA 7325, suggest a volatile-depleted parent body. This unique gabbro is demonstrably a cumulate, but the composition of its parental melt cannot be precisely assessed. However, the liquid from which NWA 7325 crystallized would have been very poor in incompatible trace elements (Yb in the range of 0.25–1.5 ×CI abundance) with a very large positive Eu anomaly. Such a melt cannot be the product of the early magmatic activity on a small parent body. Instead, we propose that the parental melt to NWA 7325 formed as a consequence of the total melting of an ancient gabbroic lithology, possibly upon impact, in agreement with the systematics of highly siderophile elements and 26Al–26Mg. Based on recent dating, the crustal material that was parental to NWA 7325 must have been older than 4562.8Ma, and formed possibly ≈4566Ma ago. If this scenario is correct, NWA 7325 provides evidence of one of the earliest crusts on a differentiated body so far studied.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2015.07.020