Loading…

Statistical study of the quasi-perpendicular shock ramp widths

The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics 2010-11, Vol.115 (A11), p.n/a
Main Authors: Hobara, Y., Balikhin, M., Krasnoselskikh, V., Gedalin, M., Yamagishi, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43
cites cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43
container_end_page n/a
container_issue A11
container_start_page
container_title Journal of Geophysical Research: Space Physics
container_volume 115
creator Hobara, Y.
Balikhin, M.
Krasnoselskikh, V.
Gedalin, M.
Yamagishi, H.
description The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.
doi_str_mv 10.1029/2010JA015659
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_01180745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563453831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOKg7f0AR3IjVe5MmbTfCKDo-RgUfuAxpmjLROu0krTr_3khlcGUWN1l853ByLiG7CEcIND-mgHA9BuSC52tkRMMjphToOhkBJlkMlKabZMf7Vwgn4SIBHJGTx0511ndWqzryXV8uo6aKupmJFr3yNm6Na828tLqvlYv8rNFvkVPvbfRpy27mt8lGpWpvdn7vLfJ8cf50dhlP7ydXZ-NprDmyLK4oFTo1GeS6SJPciKoQmpYFMwnFMikzLAtQBecMla40ZgiGVSpMbQQtErZFDgbfmapl6-y7ckvZKCsvx1Np576XgJhBmvAPDPDeALeuWfTGd_K16d085JM5ivBx5HmADgdIu8Z7Z6qVLYL8KVT-LTTg-7-eyoeqKqfm2vqVhjKRU8SfoGzgPm1tlv96yuvJw5iGzFlQxYMqbMJ8rVTKvUmRspTLl7uJPJ08prenN7kE9g0-i5FU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916564159</pqid></control><display><type>article</type><title>Statistical study of the quasi-perpendicular shock ramp widths</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</creator><creatorcontrib>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</creatorcontrib><description>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2010JA015659</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Planetology ; Plasma physics ; Sciences of the Universe ; shock ; Space</subject><ispartof>Journal of Geophysical Research: Space Physics, 2010-11, Vol.115 (A11), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</citedby><cites>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JA015659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JA015659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23692114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-01180745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Yamagishi, H.</creatorcontrib><title>Statistical study of the quasi-perpendicular shock ramp widths</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</description><subject>Astrophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Planetology</subject><subject>Plasma physics</subject><subject>Sciences of the Universe</subject><subject>shock</subject><subject>Space</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOKg7f0AR3IjVe5MmbTfCKDo-RgUfuAxpmjLROu0krTr_3khlcGUWN1l853ByLiG7CEcIND-mgHA9BuSC52tkRMMjphToOhkBJlkMlKabZMf7Vwgn4SIBHJGTx0511ndWqzryXV8uo6aKupmJFr3yNm6Na828tLqvlYv8rNFvkVPvbfRpy27mt8lGpWpvdn7vLfJ8cf50dhlP7ydXZ-NprDmyLK4oFTo1GeS6SJPciKoQmpYFMwnFMikzLAtQBecMla40ZgiGVSpMbQQtErZFDgbfmapl6-y7ckvZKCsvx1Np576XgJhBmvAPDPDeALeuWfTGd_K16d085JM5ivBx5HmADgdIu8Z7Z6qVLYL8KVT-LTTg-7-eyoeqKqfm2vqVhjKRU8SfoGzgPm1tlv96yuvJw5iGzFlQxYMqbMJ8rVTKvUmRspTLl7uJPJ08prenN7kE9g0-i5FU</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hobara, Y.</creator><creator>Balikhin, M.</creator><creator>Krasnoselskikh, V.</creator><creator>Gedalin, M.</creator><creator>Yamagishi, H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>American Geophysical Union/Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201011</creationdate><title>Statistical study of the quasi-perpendicular shock ramp widths</title><author>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astrophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Planetology</topic><topic>Plasma physics</topic><topic>Sciences of the Universe</topic><topic>shock</topic><topic>Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Yamagishi, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobara, Y.</au><au>Balikhin, M.</au><au>Krasnoselskikh, V.</au><au>Gedalin, M.</au><au>Yamagishi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical study of the quasi-perpendicular shock ramp widths</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-11</date><risdate>2010</risdate><volume>115</volume><issue>A11</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JA015659</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Space Physics, 2010-11, Vol.115 (A11), p.n/a
issn 0148-0227
2169-9380
2156-2202
2169-9402
language eng
recordid cdi_hal_primary_oai_HAL_insu_01180745v1
source Wiley; Wiley-Blackwell AGU Digital Archive
subjects Astrophysics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Planetology
Plasma physics
Sciences of the Universe
shock
Space
title Statistical study of the quasi-perpendicular shock ramp widths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20study%20of%20the%20quasi-perpendicular%20shock%20ramp%20widths&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Hobara,%20Y.&rft.date=2010-11&rft.volume=115&rft.issue=A11&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JA015659&rft_dat=%3Cproquest_hal_p%3E2563453831%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916564159&rft_id=info:pmid/&rfr_iscdi=true