Loading…
Statistical study of the quasi-perpendicular shock ramp widths
The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the in...
Saved in:
Published in: | Journal of Geophysical Research: Space Physics 2010-11, Vol.115 (A11), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43 |
container_end_page | n/a |
container_issue | A11 |
container_start_page | |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 115 |
creator | Hobara, Y. Balikhin, M. Krasnoselskikh, V. Gedalin, M. Yamagishi, H. |
description | The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks. |
doi_str_mv | 10.1029/2010JA015659 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_01180745v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563453831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOKg7f0AR3IjVe5MmbTfCKDo-RgUfuAxpmjLROu0krTr_3khlcGUWN1l853ByLiG7CEcIND-mgHA9BuSC52tkRMMjphToOhkBJlkMlKabZMf7Vwgn4SIBHJGTx0511ndWqzryXV8uo6aKupmJFr3yNm6Na828tLqvlYv8rNFvkVPvbfRpy27mt8lGpWpvdn7vLfJ8cf50dhlP7ydXZ-NprDmyLK4oFTo1GeS6SJPciKoQmpYFMwnFMikzLAtQBecMla40ZgiGVSpMbQQtErZFDgbfmapl6-y7ckvZKCsvx1Np576XgJhBmvAPDPDeALeuWfTGd_K16d085JM5ivBx5HmADgdIu8Z7Z6qVLYL8KVT-LTTg-7-eyoeqKqfm2vqVhjKRU8SfoGzgPm1tlv96yuvJw5iGzFlQxYMqbMJ8rVTKvUmRspTLl7uJPJ08prenN7kE9g0-i5FU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916564159</pqid></control><display><type>article</type><title>Statistical study of the quasi-perpendicular shock ramp widths</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</creator><creatorcontrib>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</creatorcontrib><description>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2010JA015659</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Astrophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Planetology ; Plasma physics ; Sciences of the Universe ; shock ; Space</subject><ispartof>Journal of Geophysical Research: Space Physics, 2010-11, Vol.115 (A11), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</citedby><cites>FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JA015659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JA015659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23692114$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-01180745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Yamagishi, H.</creatorcontrib><title>Statistical study of the quasi-perpendicular shock ramp widths</title><title>Journal of Geophysical Research: Space Physics</title><addtitle>J. Geophys. Res</addtitle><description>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</description><subject>Astrophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Planetology</subject><subject>Plasma physics</subject><subject>Sciences of the Universe</subject><subject>shock</subject><subject>Space</subject><issn>0148-0227</issn><issn>2169-9380</issn><issn>2156-2202</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOKg7f0AR3IjVe5MmbTfCKDo-RgUfuAxpmjLROu0krTr_3khlcGUWN1l853ByLiG7CEcIND-mgHA9BuSC52tkRMMjphToOhkBJlkMlKabZMf7Vwgn4SIBHJGTx0511ndWqzryXV8uo6aKupmJFr3yNm6Na828tLqvlYv8rNFvkVPvbfRpy27mt8lGpWpvdn7vLfJ8cf50dhlP7ydXZ-NprDmyLK4oFTo1GeS6SJPciKoQmpYFMwnFMikzLAtQBecMla40ZgiGVSpMbQQtErZFDgbfmapl6-y7ckvZKCsvx1Np576XgJhBmvAPDPDeALeuWfTGd_K16d085JM5ivBx5HmADgdIu8Z7Z6qVLYL8KVT-LTTg-7-eyoeqKqfm2vqVhjKRU8SfoGzgPm1tlv96yuvJw5iGzFlQxYMqbMJ8rVTKvUmRspTLl7uJPJ08prenN7kE9g0-i5FU</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hobara, Y.</creator><creator>Balikhin, M.</creator><creator>Krasnoselskikh, V.</creator><creator>Gedalin, M.</creator><creator>Yamagishi, H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>American Geophysical Union/Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201011</creationdate><title>Statistical study of the quasi-perpendicular shock ramp widths</title><author>Hobara, Y. ; Balikhin, M. ; Krasnoselskikh, V. ; Gedalin, M. ; Yamagishi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astrophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Planetology</topic><topic>Plasma physics</topic><topic>Sciences of the Universe</topic><topic>shock</topic><topic>Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Balikhin, M.</creatorcontrib><creatorcontrib>Krasnoselskikh, V.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Yamagishi, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research: Space Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobara, Y.</au><au>Balikhin, M.</au><au>Krasnoselskikh, V.</au><au>Gedalin, M.</au><au>Yamagishi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical study of the quasi-perpendicular shock ramp widths</atitle><jtitle>Journal of Geophysical Research: Space Physics</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-11</date><risdate>2010</risdate><volume>115</volume><issue>A11</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9380</issn><eissn>2156-2202</eissn><eissn>2169-9402</eissn><abstract>The width of the collisionless shock front is one of the key shock parameters. The width of the main shock transition layer is related to the nature of the collisionless process that balances nonlinearity and therefore leads to the formation of the shock itself. The shock width determines how the incoming plasma particles interact with the macroscopic fields within the front and, therefore, the processes that result in the energy redistribution at the front. Cluster and Themis measurements at the quasi‐perpendicular part of the terrestrial bow shock are used to study the spatial scale of the magnetic ramp. It is shown that statistically the ramp spatial scale decreases with the increase of the shock Mach number. This decrease of the shock scale together with previously observed whistler packets in the foot of supercritical quasi‐perpendicular shock indicates that it is the dispersion that determines the size of magnetic ramp even for supercritical shocks.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JA015659</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Space Physics, 2010-11, Vol.115 (A11), p.n/a |
issn | 0148-0227 2169-9380 2156-2202 2169-9402 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_01180745v1 |
source | Wiley; Wiley-Blackwell AGU Digital Archive |
subjects | Astrophysics Earth sciences Earth, ocean, space Exact sciences and technology Planetology Plasma physics Sciences of the Universe shock Space |
title | Statistical study of the quasi-perpendicular shock ramp widths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20study%20of%20the%20quasi-perpendicular%20shock%20ramp%20widths&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Space%20Physics&rft.au=Hobara,%20Y.&rft.date=2010-11&rft.volume=115&rft.issue=A11&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JA015659&rft_dat=%3Cproquest_hal_p%3E2563453831%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5138-f226c7e809cb749e6fb6c2db3e421d4d81db0ab5531acfc1810e3fa10ece62b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=916564159&rft_id=info:pmid/&rfr_iscdi=true |