Loading…

Synmetamorphic Cu remobilization during the Pan-African orogeny: Microstructural, petrological and geochronological data on the kyanite-micaschists hosting the Cu(–U) Lumwana deposit in the Western Zambian Copperbelt of the Lufilian belt

The Pan-African Lufilian orogenic belt hosts world-class Cu deposits. In the Congolese Copperbelt (DRC), Cu(–Co) deposits, are mostly hosted within evaporitic and siliciclastic Neoproterozoic metasedimentary rocks (Mines Subgroup) and are interpreted as syn- to late-diagenetic deposits. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:Ore geology reviews 2016-06, Vol.75, p.52-75
Main Authors: Turlin, François, Eglinger, Aurélien, Vanderhaeghe, Olivier, André-Mayer, Anne-Sylvie, Poujol, Marc, Mercadier, Julien, Bartlett, Ryan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Pan-African Lufilian orogenic belt hosts world-class Cu deposits. In the Congolese Copperbelt (DRC), Cu(–Co) deposits, are mostly hosted within evaporitic and siliciclastic Neoproterozoic metasedimentary rocks (Mines Subgroup) and are interpreted as syn- to late-diagenetic deposits. In this paper, we present new data on Cu(–U) deposit hosted in metamorphic rocks of the internal zone of the Lufilian belt known as the Western Zambian Copperbelt in which a primary Cu mineralization is overprinted by a second syn-metamorphic Cu mineralizing event. This mineralizing event is synchronous with the Pan-African metamorphism affecting both the pre-Katanga basement and the Katanga metasedimentary sequence. Cu(–U) occurrences in the Western Zambian Copperbelt are hosted by kyanite-micaschists metamorphosed in the upper amphibolite facies. Mineral inclusions of graphite, micas and sulfides in kyanite porphyroblasts of the Cu-bearing kyanite-micaschists in the Lumwana Cu deposit point to a sedimentary protolith with relics of an inherited Cu stock. Based on petrologic, microstructural and geochronological evidence, we propose that this initial Cu-stock was remobilized during the Pan-African orogeny. Graphite, micas and sulfides preserved in a first generation of kyanite poikiloblasts (Ky1) define an inherited S0/1 foliation developed during the prograde part of the P–T path (D1 deformation-metamorphic stage) reaching HP–MT metamorphic conditions. Remobilization during the retrograde part of the P–T path is evidenced by chalcopyrite–pyrrhotite and chalcopyrite–bornite delineating a steep-dipping S2 schistosity and by chalcopyrite and bornite delineating a shallow-dipping S3 schistosity associated with top to the south kinematic criteria. This retrograde path is coeval with ductile deformation in the kyanite field as evidenced by a second generation of synkinematic kyanite porphyroblasts (Ky2) transposed in the S3 schistosity (Ky2–3), and is marked by progressive cooling from ca. 620°C down to 580°C (rutile geothermometry). Syn-S2–3 metamorphic monazite grains yield U–Th–Pb ages ranging from ca. 540 to 500Ma. Final retrogression and remobilization of Cu is marked by recrystallization of the sulfides in top to the north C3 shear bands associated with rutile crystals yielding temperatures from ca. 610 to 540°C. This final remobilization is younger than ca. 500Ma (youngest U–Th–Pb age on syn-S3 recrystallized monazite). These data are consistent with successive Cu remobi
ISSN:0169-1368
1872-7360
DOI:10.1016/j.oregeorev.2015.11.022