Loading…
Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe
The stable isotope compositions of veins provide information on the conditions of fluid–rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data...
Saved in:
Published in: | Geochimica et cosmochimica acta 2016-06, Vol.183, p.234-249 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stable isotope compositions of veins provide information on the conditions of fluid–rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data in order to constrain the conditions of fluid circulation and the relationship between fluid circulation and nickel ore-forming laterization focusing on the Koniambo Massif. For magnesite veins occurring at the base of the nappe, the high δ18O values between 27.8‰ and 29.5‰ attest to a low temperature formation. Clumped isotope analyses on magnesite give temperatures between 26°C and 42°C that are consistent with amorphous silica–magnesite oxygen isotope equilibrium. The meteoric origin of the fluid is indicated by calculated δ18Owater values between −3.4‰ to +1.5‰. Amorphous silica associated with magnesite or occurring in the coarse saprolite level displays a narrow range of δ18O values between 29.7‰ and 35.3‰. For quartz veins occurring at the top of the bedrock and at the saprolite level, commonly in association with Ni-talc-like minerals, the δ18O values are lower, between 21.8‰ and 29.0‰ and suggest low-temperature hydrothermal conditions (∼40–95°C). Thermal equilibration of the fluid along the geothermic gradient before upward flow through the nappe and/or influence of exothermic reactions of serpentinization could be the source(s) of heat needed to form quartz veins under such conditions. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/j.gca.2016.03.021 |