Loading…
CHO-Bearing Molecules in Comet 67P/Churyumov-Gerasimenko
In 2004, the Rosetta spacecraft was sent to comet 67P/Churyumov-Gerasimenko for the first ever long-term investigation of a comet. After its arrival in 2014, the spacecraft spent more than 2 years in immediate proximity to the comet. During these 2 years, the ROSINA Double Focusing Mass Spectrometer...
Saved in:
Published in: | ACS earth and space chemistry 2019-09, Vol.3 (9), p.1854-1861 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 2004, the Rosetta spacecraft was sent to comet 67P/Churyumov-Gerasimenko for the first ever long-term investigation of a comet. After its arrival in 2014, the spacecraft spent more than 2 years in immediate proximity to the comet. During these 2 years, the ROSINA Double Focusing Mass Spectrometer (DFMS) onboard Rosetta discovered a coma with an unexpectedly complex chemical composition that included many oxygenated molecules. Determining the exact cometary composition is an essential first step to understanding of the organic rich chemistry in star forming regions and protoplanetary disks that are ultimately conserved in cometary ices. In this study, a joint approach of laboratory calibration and space data analysis was used to perform a detailed identification and quantification of CHO compounds in the coma of 67P/Churyumov-Gerasimenko. The goal was to derive the CHO compound abundances relative to water for masses up to 100 u. For this study, the May 2015 postequinox period represents the best bulk abundances of comet 67P/Churyumov-Gerasimenko. A wide variety of CHO compounds were discovered, and their bulk abundances were derived. Finally, these results are compared to abundances of CHO-bearing molecules in other comets, obtained mostly from ground-based observations and modeling. |
---|---|
ISSN: | 2472-3452 2472-3452 |
DOI: | 10.1021/acsearthspacechem.9b00094 |