Loading…
A wind origin for Titan's haze structure
Titan, the largest moon of Saturn, is the only satellite in the Solar System with a dense atmosphere. Titan's atmosphere is mainly nitrogen with a surface pressure of 1.5 atmospheres and a temperature of 95 K (ref. 1). A seasonally varying haze, which appears to be the main source of heating an...
Saved in:
Published in: | Nature (London) 2002-08, Vol.418 (6900), p.853-856 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Titan, the largest moon of Saturn, is the only satellite in the Solar System with a dense atmosphere. Titan's atmosphere is mainly nitrogen with a surface pressure of 1.5 atmospheres and a temperature of 95 K (ref. 1). A seasonally varying haze, which appears to be the main source of heating and cooling that drives atmospheric circulation, shrouds the moon. The haze has numerous features that have remained unexplained. There are several layers, including a 'polar hood', and a pronounced hemispheric asymmetry. The upper atmosphere rotates much faster than the surface of the moon, and there is a significant latitudinal temperature asymmetry at the equinoxes. Here we describe a numerical simulation of Titan's atmosphere, which appears to explain the observed features of the haze. The critical new factor in our model is the coupling of haze formation with atmospheric dynamics, which includes a component of strong positive feedback between the haze and the winds. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature00961 |