Loading…

The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68

Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. M...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2012-11, Vol.547, p.A11
Main Authors: Nielbock, M., Launhardt, R., Steinacker, J., Stutz, A. M., Balog, Z., Beuther, H., Bouwman, J., Henning, Th, Hily-Blant, P., Kainulainen, J., Krause, O., Linz, H., Lippok, N., Ragan, S., Risacher, C., Schmiedeke, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553
cites cdi_FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553
container_end_page
container_issue
container_start_page A11
container_title Astronomy and astrophysics (Berlin)
container_volume 547
creator Nielbock, M.
Launhardt, R.
Steinacker, J.
Stutz, A. M.
Balog, Z.
Beuther, H.
Bouwman, J.
Henning, Th
Hily-Blant, P.
Kainulainen, J.
Krause, O.
Linz, H.
Lippok, N.
Ragan, S.
Risacher, C.
Schmiedeke, A.
description Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12CO (2–1), and 13CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36.″4. We find a temperature gradient dropping from (16.7-1.0+1.3) K at the edge to (8.2-0.7+2.1) K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. The column density peaks at NH = (4.3-2.8+1.4) × 1022 cm-2, and the central volume density was determined to nH = (3.4-2.5+0.9) × 105  cm-3. B68 has a mass of 3.1 M⊙ of material with AK > 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. At 100 and 160 μm, we observe a crescent of enhanced emission to the south. Conclusions. The dust temperature profile of B68 agrees well with previous estimates. We find the radial density distribution from the edge of the inner plateau outward to be nH ∝ r-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology seen at 100 and 160 μm. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament that dispersed. We also resolve a new compact source in the southeastern trunk and find
doi_str_mv 10.1051/0004-6361/201219139
format article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03612400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_3JK68FQD_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553</originalsourceid><addsrcrecordid>eNo9kM1u1DAURi0EEkPLE7DxBgkqhdrxTxx2bZl2SkdqUYtYWtfJtWLIJCPbU1qengyDsrKufL6zOIS84-wTZ4qfMsZkoYXmpyXjJa-5qF-QBZeiLFgl9UuymInX5E1KP6ez5EYsyJ-HDukSYh8wZXrXQcJER0_vM0Tqx7iBHMaBfljejfcf6egSxkds6e-QO7rCmJoO-880T5J2NwkybrYYIe8iUhha2uKQQn6mbUg5Brfby_75z7U5Jq889Anf_n-PyPfL5cPFqljfXl1fnK2LRqgyF9xJ1yqva4m8bksuAJ0svRJSM-WMN9JVrQahgfvGoNFKCOe0M0IBVkqJI3Jy8HbQ220MG4jPdoRgV2drG4a0s2zqUkrGHvkEiwPcxDGliH5ecGb3re2-pN2XtHPrafX-sNpCaqD3EYYmpHla6soIU7OJKw7clAOf5n-Iv6yuRKWsYT-s-HqjzeW3L_Zc_AX3OI0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68</title><source>EZB Electronic Journals Library</source><creator>Nielbock, M. ; Launhardt, R. ; Steinacker, J. ; Stutz, A. M. ; Balog, Z. ; Beuther, H. ; Bouwman, J. ; Henning, Th ; Hily-Blant, P. ; Kainulainen, J. ; Krause, O. ; Linz, H. ; Lippok, N. ; Ragan, S. ; Risacher, C. ; Schmiedeke, A.</creator><creatorcontrib>Nielbock, M. ; Launhardt, R. ; Steinacker, J. ; Stutz, A. M. ; Balog, Z. ; Beuther, H. ; Bouwman, J. ; Henning, Th ; Hily-Blant, P. ; Kainulainen, J. ; Krause, O. ; Linz, H. ; Lippok, N. ; Ragan, S. ; Risacher, C. ; Schmiedeke, A.</creatorcontrib><description>Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12CO (2–1), and 13CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36.″4. We find a temperature gradient dropping from (16.7-1.0+1.3) K at the edge to (8.2-0.7+2.1) K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. The column density peaks at NH = (4.3-2.8+1.4) × 1022 cm-2, and the central volume density was determined to nH = (3.4-2.5+0.9) × 105  cm-3. B68 has a mass of 3.1 M⊙ of material with AK &gt; 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. At 100 and 160 μm, we observe a crescent of enhanced emission to the south. Conclusions. The dust temperature profile of B68 agrees well with previous estimates. We find the radial density distribution from the edge of the inner plateau outward to be nH ∝ r-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology seen at 100 and 160 μm. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament that dispersed. We also resolve a new compact source in the southeastern trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201219139</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; dust ; Earth, ocean, space ; Exact sciences and technology ; extinction ; infrared: ISM ; ISM: clouds ; ISM: individual objects: Barnard 68 ; Sciences of the Universe ; stars: formation</subject><ispartof>Astronomy and astrophysics (Berlin), 2012-11, Vol.547, p.A11</ispartof><rights>2014 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553</citedby><cites>FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553</cites><orcidid>0000-0002-1493-300X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26783890$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://insu.hal.science/insu-03612400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielbock, M.</creatorcontrib><creatorcontrib>Launhardt, R.</creatorcontrib><creatorcontrib>Steinacker, J.</creatorcontrib><creatorcontrib>Stutz, A. M.</creatorcontrib><creatorcontrib>Balog, Z.</creatorcontrib><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Bouwman, J.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Hily-Blant, P.</creatorcontrib><creatorcontrib>Kainulainen, J.</creatorcontrib><creatorcontrib>Krause, O.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Lippok, N.</creatorcontrib><creatorcontrib>Ragan, S.</creatorcontrib><creatorcontrib>Risacher, C.</creatorcontrib><creatorcontrib>Schmiedeke, A.</creatorcontrib><title>The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12CO (2–1), and 13CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36.″4. We find a temperature gradient dropping from (16.7-1.0+1.3) K at the edge to (8.2-0.7+2.1) K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. The column density peaks at NH = (4.3-2.8+1.4) × 1022 cm-2, and the central volume density was determined to nH = (3.4-2.5+0.9) × 105  cm-3. B68 has a mass of 3.1 M⊙ of material with AK &gt; 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. At 100 and 160 μm, we observe a crescent of enhanced emission to the south. Conclusions. The dust temperature profile of B68 agrees well with previous estimates. We find the radial density distribution from the edge of the inner plateau outward to be nH ∝ r-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology seen at 100 and 160 μm. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament that dispersed. We also resolve a new compact source in the southeastern trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.</description><subject>Astronomy</subject><subject>dust</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>extinction</subject><subject>infrared: ISM</subject><subject>ISM: clouds</subject><subject>ISM: individual objects: Barnard 68</subject><subject>Sciences of the Universe</subject><subject>stars: formation</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1u1DAURi0EEkPLE7DxBgkqhdrxTxx2bZl2SkdqUYtYWtfJtWLIJCPbU1qengyDsrKufL6zOIS84-wTZ4qfMsZkoYXmpyXjJa-5qF-QBZeiLFgl9UuymInX5E1KP6ez5EYsyJ-HDukSYh8wZXrXQcJER0_vM0Tqx7iBHMaBfljejfcf6egSxkds6e-QO7rCmJoO-880T5J2NwkybrYYIe8iUhha2uKQQn6mbUg5Brfby_75z7U5Jq889Anf_n-PyPfL5cPFqljfXl1fnK2LRqgyF9xJ1yqva4m8bksuAJ0svRJSM-WMN9JVrQahgfvGoNFKCOe0M0IBVkqJI3Jy8HbQ220MG4jPdoRgV2drG4a0s2zqUkrGHvkEiwPcxDGliH5ecGb3re2-pN2XtHPrafX-sNpCaqD3EYYmpHla6soIU7OJKw7clAOf5n-Iv6yuRKWsYT-s-HqjzeW3L_Zc_AX3OI0I</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Nielbock, M.</creator><creator>Launhardt, R.</creator><creator>Steinacker, J.</creator><creator>Stutz, A. M.</creator><creator>Balog, Z.</creator><creator>Beuther, H.</creator><creator>Bouwman, J.</creator><creator>Henning, Th</creator><creator>Hily-Blant, P.</creator><creator>Kainulainen, J.</creator><creator>Krause, O.</creator><creator>Linz, H.</creator><creator>Lippok, N.</creator><creator>Ragan, S.</creator><creator>Risacher, C.</creator><creator>Schmiedeke, A.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid></search><sort><creationdate>20121101</creationdate><title>The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68</title><author>Nielbock, M. ; Launhardt, R. ; Steinacker, J. ; Stutz, A. M. ; Balog, Z. ; Beuther, H. ; Bouwman, J. ; Henning, Th ; Hily-Blant, P. ; Kainulainen, J. ; Krause, O. ; Linz, H. ; Lippok, N. ; Ragan, S. ; Risacher, C. ; Schmiedeke, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomy</topic><topic>dust</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>extinction</topic><topic>infrared: ISM</topic><topic>ISM: clouds</topic><topic>ISM: individual objects: Barnard 68</topic><topic>Sciences of the Universe</topic><topic>stars: formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielbock, M.</creatorcontrib><creatorcontrib>Launhardt, R.</creatorcontrib><creatorcontrib>Steinacker, J.</creatorcontrib><creatorcontrib>Stutz, A. M.</creatorcontrib><creatorcontrib>Balog, Z.</creatorcontrib><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Bouwman, J.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Hily-Blant, P.</creatorcontrib><creatorcontrib>Kainulainen, J.</creatorcontrib><creatorcontrib>Krause, O.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Lippok, N.</creatorcontrib><creatorcontrib>Ragan, S.</creatorcontrib><creatorcontrib>Risacher, C.</creatorcontrib><creatorcontrib>Schmiedeke, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielbock, M.</au><au>Launhardt, R.</au><au>Steinacker, J.</au><au>Stutz, A. M.</au><au>Balog, Z.</au><au>Beuther, H.</au><au>Bouwman, J.</au><au>Henning, Th</au><au>Hily-Blant, P.</au><au>Kainulainen, J.</au><au>Krause, O.</au><au>Linz, H.</au><au>Lippok, N.</au><au>Ragan, S.</au><au>Risacher, C.</au><au>Schmiedeke, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>547</volume><spage>A11</spage><pages>A11-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><coden>AAEJAF</coden><abstract>Context. Isolated starless cores within molecular clouds can be used as a testbed to investigate the conditions prior to the onset of fragmentation and gravitational proto-stellar collapse. Aims. We aim to determine the distribution of the dust temperature and the density of the starless core B68. Methods. In the framework of the Herschel guaranteed-time key programme “The Earliest Phases of Star formation” (EPoS), we have imaged B68 between 100 and 500 μm. Ancillary data at (sub)millimetre wavelengths, spectral line maps of the 12CO (2–1), and 13CO (2–1) transitions, as well as an NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from the line-of-sight averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent-shaped morphology found in the FIR maps. Results. For the first time, we spatially resolve the dust temperature and density distribution of B68, convolved to a beam size of 36.″4. We find a temperature gradient dropping from (16.7-1.0+1.3) K at the edge to (8.2-0.7+2.1) K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. The column density peaks at NH = (4.3-2.8+1.4) × 1022 cm-2, and the central volume density was determined to nH = (3.4-2.5+0.9) × 105  cm-3. B68 has a mass of 3.1 M⊙ of material with AK &gt; 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. At 100 and 160 μm, we observe a crescent of enhanced emission to the south. Conclusions. The dust temperature profile of B68 agrees well with previous estimates. We find the radial density distribution from the edge of the inner plateau outward to be nH ∝ r-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology seen at 100 and 160 μm. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament that dispersed. We also resolve a new compact source in the southeastern trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201219139</doi><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2012-11, Vol.547, p.A11
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_insu_03612400v1
source EZB Electronic Journals Library
subjects Astronomy
dust
Earth, ocean, space
Exact sciences and technology
extinction
infrared: ISM
ISM: clouds
ISM: individual objects: Barnard 68
Sciences of the Universe
stars: formation
title The Earliest Phases of Star formation (EPoS) observed with Herschel: the dust temperature and density distributions of B68
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Earliest%20Phases%20of%20Star%20formation%20(EPoS)%20observed%20with%20Herschel:%20the%20dust%20temperature%20and%20density%20distributions%20of%20B68&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Nielbock,%20M.&rft.date=2012-11-01&rft.volume=547&rft.spage=A11&rft.pages=A11-&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361/201219139&rft_dat=%3Cistex_hal_p%3Eark_67375_80W_3JK68FQD_B%3C/istex_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-1b4bd5f694e19d213aeb42f534605b8f84b7d6a36a1fc8e86533bb6b835ae7553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true