Loading…

Angular momentum transport efficiency in post-main sequence low-mass stars

Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1−1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2016-05, Vol.589, p.A23
Main Authors: Spada, F., Gellert, M., Arlt, R., Deheuvels, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3
cites cdi_FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3
container_end_page
container_issue
container_start_page A23
container_title Astronomy and astrophysics (Berlin)
container_volume 589
creator Spada, F.
Gellert, M.
Arlt, R.
Deheuvels, S.
description Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1−1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.
doi_str_mv 10.1051/0004-6361/201527591
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03675415v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855394514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRsFZ_gZssRYidx51MZlmKtUpBkGLdDdNkotG8nJuo_fdOqXTt6j74zuVwLiGXjN4wKtmEUgpxIhI24ZRJrqRmR2TEQPCYKkiOyehAnJIzxPcwcpaKEXmYNq9DZX1Ut7Vr-qGOem8b7FrfR64oyqx0TbaNyibqWuzj2oYO3ecQti6q2u-wQYywtx7PyUlhK3QXf3VMVvPb1WwRLx_v7mfTZZyBEH2cc9CZFhxyLqjYqFwV1gmVc6eD1ZSlmwwAdAqcAnU5gJWFpjyBwkrucjEm1_uzb7YynS9r67emtaVZTJembHAwVCRKApNfLMBXe7jzbTCNvalLzFxV2ca1AxqWSik0yBDVP1CqEg2MB1Ts0cy3iN4VBx-Mmt1DzC5us4vbHB4SVPFeVWLvfg4S6z9MooSSJqVrM5_R9cvi-clo8QuFnose</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850769412</pqid></control><display><type>article</type><title>Angular momentum transport efficiency in post-main sequence low-mass stars</title><source>EZB Electronic Journals Library</source><creator>Spada, F. ; Gellert, M. ; Arlt, R. ; Deheuvels, S.</creator><creatorcontrib>Spada, F. ; Gellert, M. ; Arlt, R. ; Deheuvels, S.</creatorcontrib><description>Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1−1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201527591</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Angular momentum ; asteroseismology ; Differential rotation ; Efficiency ; Envelopes ; magnetohydrodynamics (MHD) ; Sciences of the Universe ; Stars ; stars: interiors ; stars: magnetic field ; stars: rotation ; stars: solar-type ; Stellar evolution ; Stellar rotation ; Transport</subject><ispartof>Astronomy and astrophysics (Berlin), 2016-05, Vol.589, p.A23</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3</citedby><cites>FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03675415$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Spada, F.</creatorcontrib><creatorcontrib>Gellert, M.</creatorcontrib><creatorcontrib>Arlt, R.</creatorcontrib><creatorcontrib>Deheuvels, S.</creatorcontrib><title>Angular momentum transport efficiency in post-main sequence low-mass stars</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1−1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.</description><subject>Angular momentum</subject><subject>asteroseismology</subject><subject>Differential rotation</subject><subject>Efficiency</subject><subject>Envelopes</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Sciences of the Universe</subject><subject>Stars</subject><subject>stars: interiors</subject><subject>stars: magnetic field</subject><subject>stars: rotation</subject><subject>stars: solar-type</subject><subject>Stellar evolution</subject><subject>Stellar rotation</subject><subject>Transport</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLw0AUhQdRsFZ_gZssRYidx51MZlmKtUpBkGLdDdNkotG8nJuo_fdOqXTt6j74zuVwLiGXjN4wKtmEUgpxIhI24ZRJrqRmR2TEQPCYKkiOyehAnJIzxPcwcpaKEXmYNq9DZX1Ut7Vr-qGOem8b7FrfR64oyqx0TbaNyibqWuzj2oYO3ecQti6q2u-wQYywtx7PyUlhK3QXf3VMVvPb1WwRLx_v7mfTZZyBEH2cc9CZFhxyLqjYqFwV1gmVc6eD1ZSlmwwAdAqcAnU5gJWFpjyBwkrucjEm1_uzb7YynS9r67emtaVZTJembHAwVCRKApNfLMBXe7jzbTCNvalLzFxV2ca1AxqWSik0yBDVP1CqEg2MB1Ts0cy3iN4VBx-Mmt1DzC5us4vbHB4SVPFeVWLvfg4S6z9MooSSJqVrM5_R9cvi-clo8QuFnose</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Spada, F.</creator><creator>Gellert, M.</creator><creator>Arlt, R.</creator><creator>Deheuvels, S.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160501</creationdate><title>Angular momentum transport efficiency in post-main sequence low-mass stars</title><author>Spada, F. ; Gellert, M. ; Arlt, R. ; Deheuvels, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angular momentum</topic><topic>asteroseismology</topic><topic>Differential rotation</topic><topic>Efficiency</topic><topic>Envelopes</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Sciences of the Universe</topic><topic>Stars</topic><topic>stars: interiors</topic><topic>stars: magnetic field</topic><topic>stars: rotation</topic><topic>stars: solar-type</topic><topic>Stellar evolution</topic><topic>Stellar rotation</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spada, F.</creatorcontrib><creatorcontrib>Gellert, M.</creatorcontrib><creatorcontrib>Arlt, R.</creatorcontrib><creatorcontrib>Deheuvels, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spada, F.</au><au>Gellert, M.</au><au>Arlt, R.</au><au>Deheuvels, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular momentum transport efficiency in post-main sequence low-mass stars</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>589</volume><spage>A23</spage><pages>A23-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1−1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201527591</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2016-05, Vol.589, p.A23
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_insu_03675415v1
source EZB Electronic Journals Library
subjects Angular momentum
asteroseismology
Differential rotation
Efficiency
Envelopes
magnetohydrodynamics (MHD)
Sciences of the Universe
Stars
stars: interiors
stars: magnetic field
stars: rotation
stars: solar-type
Stellar evolution
Stellar rotation
Transport
title Angular momentum transport efficiency in post-main sequence low-mass stars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20momentum%20transport%20efficiency%20in%20post-main%20sequence%20low-mass%20stars&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Spada,%20F.&rft.date=2016-05-01&rft.volume=589&rft.spage=A23&rft.pages=A23-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201527591&rft_dat=%3Cproquest_hal_p%3E1855394514%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-d249c9324d2303b7d7fae37d2e9746818bc4449842040ed44a5f90264fa52ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850769412&rft_id=info:pmid/&rfr_iscdi=true