Loading…
Field‐Aligned Potentials at Mars From MAVEN Observations
One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraT...
Saved in:
Published in: | Geophysical research letters 2018-10, Vol.45 (19), p.10,119-10,127 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3 |
container_end_page | 10,127 |
container_issue | 19 |
container_start_page | 10,119 |
container_title | Geophysical research letters |
container_volume | 45 |
creator | Xu, Shaosui Mitchell, David L. McFadden, James P. Collinson, Glyn Harada, Yuki Lillis, Robert Mazelle, Christian Connerney, J. E. P. |
description | One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude |
doi_str_mv | 10.1029/2018GL080136 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03678176v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126946735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFKzVnQ8QcCdG72T-Mu5C6Y-QWhF1O0ySiU5JkzqTVrrzEXxGn8RIRFy5unfxcTgchE4xXGKI5FUEOJ6mEAMmfA8NsKQ0jAHEPhoAyO6PBD9ER94vAYAAwQN0PbGmKj7fP5LKPtemCO6a1tSt1ZUPdBvMtfPBxDWrYJ48jW-DReaN2-rWNrU_Rgdlx8zJzx2ix8n4YTQL08X0ZpSkYU4poyGXUBphMgZ5xCItY6PzIieMiYLLjFMshOY8LgglBeclzjmhVBYaWCZLbgoyROd97ouu1NrZlXY71WirZkmqbO03CggXMRZ8izt81uO1a143xrdq2Wxc3fVTEY64pFwQ1qmLXuWu8d6Z8jcXg_qeUv2dsuNRz99sZXb_WjW9T1kMnJIvgzhyig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126946735</pqid></control><display><type>article</type><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</creator><creatorcontrib>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</creatorcontrib><description>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude <3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow.
Plain Language Summary
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel.
Key Points
This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field
The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars
Derived dayside electric fields are <3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080136</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Alignment ; ambipolar electric fields ; Atmosphere ; Atmospheric evolution ; Charged particles ; Composition ; Electric field ; Electric fields ; Electromagnetic forces ; Electrons ; Escape velocity ; Evolution ; Forces (mechanics) ; ion escape ; Ions ; Magnetic field ; Magnetic fields ; Mars ; Mars atmosphere ; Mars missions ; Mars spacecraft ; Mathematical analysis ; MAVEN ; Neutral particles ; Outflow ; Particle physics ; Photoelectrons ; Planetary magnetic fields ; Polar wind ; Sciences of the Universe ; Solar wind ; Spacecraft ; Statistical analysis ; Statistical methods ; Water outflow</subject><ispartof>Geophysical research letters, 2018-10, Vol.45 (19), p.10,119-10,127</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</citedby><cites>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</cites><orcidid>0000-0002-5121-600X ; 0000-0001-9154-7236 ; 0000-0003-0578-517X ; 0000-0003-4883-9027 ; 0000-0002-4001-6352 ; 0000-0001-5332-9561 ; 0000-0001-7478-6462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03678176$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Collinson, Glyn</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Lillis, Robert</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><title>Geophysical research letters</title><description>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude <3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow.
Plain Language Summary
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel.
Key Points
This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field
The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars
Derived dayside electric fields are <3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</description><subject>Alignment</subject><subject>ambipolar electric fields</subject><subject>Atmosphere</subject><subject>Atmospheric evolution</subject><subject>Charged particles</subject><subject>Composition</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electromagnetic forces</subject><subject>Electrons</subject><subject>Escape velocity</subject><subject>Evolution</subject><subject>Forces (mechanics)</subject><subject>ion escape</subject><subject>Ions</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars missions</subject><subject>Mars spacecraft</subject><subject>Mathematical analysis</subject><subject>MAVEN</subject><subject>Neutral particles</subject><subject>Outflow</subject><subject>Particle physics</subject><subject>Photoelectrons</subject><subject>Planetary magnetic fields</subject><subject>Polar wind</subject><subject>Sciences of the Universe</subject><subject>Solar wind</subject><subject>Spacecraft</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Water outflow</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFKzVnQ8QcCdG72T-Mu5C6Y-QWhF1O0ySiU5JkzqTVrrzEXxGn8RIRFy5unfxcTgchE4xXGKI5FUEOJ6mEAMmfA8NsKQ0jAHEPhoAyO6PBD9ER94vAYAAwQN0PbGmKj7fP5LKPtemCO6a1tSt1ZUPdBvMtfPBxDWrYJ48jW-DReaN2-rWNrU_Rgdlx8zJzx2ix8n4YTQL08X0ZpSkYU4poyGXUBphMgZ5xCItY6PzIieMiYLLjFMshOY8LgglBeclzjmhVBYaWCZLbgoyROd97ouu1NrZlXY71WirZkmqbO03CggXMRZ8izt81uO1a143xrdq2Wxc3fVTEY64pFwQ1qmLXuWu8d6Z8jcXg_qeUv2dsuNRz99sZXb_WjW9T1kMnJIvgzhyig</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Xu, Shaosui</creator><creator>Mitchell, David L.</creator><creator>McFadden, James P.</creator><creator>Collinson, Glyn</creator><creator>Harada, Yuki</creator><creator>Lillis, Robert</creator><creator>Mazelle, Christian</creator><creator>Connerney, J. E. P.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0003-0578-517X</orcidid><orcidid>https://orcid.org/0000-0003-4883-9027</orcidid><orcidid>https://orcid.org/0000-0002-4001-6352</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><orcidid>https://orcid.org/0000-0001-7478-6462</orcidid></search><sort><creationdate>20181016</creationdate><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><author>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alignment</topic><topic>ambipolar electric fields</topic><topic>Atmosphere</topic><topic>Atmospheric evolution</topic><topic>Charged particles</topic><topic>Composition</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electromagnetic forces</topic><topic>Electrons</topic><topic>Escape velocity</topic><topic>Evolution</topic><topic>Forces (mechanics)</topic><topic>ion escape</topic><topic>Ions</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars missions</topic><topic>Mars spacecraft</topic><topic>Mathematical analysis</topic><topic>MAVEN</topic><topic>Neutral particles</topic><topic>Outflow</topic><topic>Particle physics</topic><topic>Photoelectrons</topic><topic>Planetary magnetic fields</topic><topic>Polar wind</topic><topic>Sciences of the Universe</topic><topic>Solar wind</topic><topic>Spacecraft</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Water outflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Collinson, Glyn</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Lillis, Robert</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaosui</au><au>Mitchell, David L.</au><au>McFadden, James P.</au><au>Collinson, Glyn</au><au>Harada, Yuki</au><au>Lillis, Robert</au><au>Mazelle, Christian</au><au>Connerney, J. E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field‐Aligned Potentials at Mars From MAVEN Observations</atitle><jtitle>Geophysical research letters</jtitle><date>2018-10-16</date><risdate>2018</risdate><volume>45</volume><issue>19</issue><spage>10,119</spage><epage>10,127</epage><pages>10,119-10,127</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude <3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow.
Plain Language Summary
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel.
Key Points
This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field
The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars
Derived dayside electric fields are <3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GL080136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0003-0578-517X</orcidid><orcidid>https://orcid.org/0000-0003-4883-9027</orcidid><orcidid>https://orcid.org/0000-0002-4001-6352</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><orcidid>https://orcid.org/0000-0001-7478-6462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2018-10, Vol.45 (19), p.10,119-10,127 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03678176v1 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Alignment ambipolar electric fields Atmosphere Atmospheric evolution Charged particles Composition Electric field Electric fields Electromagnetic forces Electrons Escape velocity Evolution Forces (mechanics) ion escape Ions Magnetic field Magnetic fields Mars Mars atmosphere Mars missions Mars spacecraft Mathematical analysis MAVEN Neutral particles Outflow Particle physics Photoelectrons Planetary magnetic fields Polar wind Sciences of the Universe Solar wind Spacecraft Statistical analysis Statistical methods Water outflow |
title | Field‐Aligned Potentials at Mars From MAVEN Observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%E2%80%90Aligned%20Potentials%20at%20Mars%20From%20MAVEN%20Observations&rft.jtitle=Geophysical%20research%20letters&rft.au=Xu,%20Shaosui&rft.date=2018-10-16&rft.volume=45&rft.issue=19&rft.spage=10,119&rft.epage=10,127&rft.pages=10,119-10,127&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080136&rft_dat=%3Cproquest_hal_p%3E2126946735%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126946735&rft_id=info:pmid/&rfr_iscdi=true |