Loading…

Field‐Aligned Potentials at Mars From MAVEN Observations

One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraT...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2018-10, Vol.45 (19), p.10,119-10,127
Main Authors: Xu, Shaosui, Mitchell, David L., McFadden, James P., Collinson, Glyn, Harada, Yuki, Lillis, Robert, Mazelle, Christian, Connerney, J. E. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3
cites cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3
container_end_page 10,127
container_issue 19
container_start_page 10,119
container_title Geophysical research letters
container_volume 45
creator Xu, Shaosui
Mitchell, David L.
McFadden, James P.
Collinson, Glyn
Harada, Yuki
Lillis, Robert
Mazelle, Christian
Connerney, J. E. P.
description One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude
doi_str_mv 10.1029/2018GL080136
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03678176v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126946735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</originalsourceid><addsrcrecordid>eNp90M1Kw0AUBeBBFKzVnQ8QcCdG72T-Mu5C6Y-QWhF1O0ySiU5JkzqTVrrzEXxGn8RIRFy5unfxcTgchE4xXGKI5FUEOJ6mEAMmfA8NsKQ0jAHEPhoAyO6PBD9ER94vAYAAwQN0PbGmKj7fP5LKPtemCO6a1tSt1ZUPdBvMtfPBxDWrYJ48jW-DReaN2-rWNrU_Rgdlx8zJzx2ix8n4YTQL08X0ZpSkYU4poyGXUBphMgZ5xCItY6PzIieMiYLLjFMshOY8LgglBeclzjmhVBYaWCZLbgoyROd97ouu1NrZlXY71WirZkmqbO03CggXMRZ8izt81uO1a143xrdq2Wxc3fVTEY64pFwQ1qmLXuWu8d6Z8jcXg_qeUv2dsuNRz99sZXb_WjW9T1kMnJIvgzhyig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126946735</pqid></control><display><type>article</type><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</creator><creatorcontrib>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</creatorcontrib><description>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude &lt;3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow. Plain Language Summary The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel. Key Points This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars Derived dayside electric fields are &lt;3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080136</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Alignment ; ambipolar electric fields ; Atmosphere ; Atmospheric evolution ; Charged particles ; Composition ; Electric field ; Electric fields ; Electromagnetic forces ; Electrons ; Escape velocity ; Evolution ; Forces (mechanics) ; ion escape ; Ions ; Magnetic field ; Magnetic fields ; Mars ; Mars atmosphere ; Mars missions ; Mars spacecraft ; Mathematical analysis ; MAVEN ; Neutral particles ; Outflow ; Particle physics ; Photoelectrons ; Planetary magnetic fields ; Polar wind ; Sciences of the Universe ; Solar wind ; Spacecraft ; Statistical analysis ; Statistical methods ; Water outflow</subject><ispartof>Geophysical research letters, 2018-10, Vol.45 (19), p.10,119-10,127</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</citedby><cites>FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</cites><orcidid>0000-0002-5121-600X ; 0000-0001-9154-7236 ; 0000-0003-0578-517X ; 0000-0003-4883-9027 ; 0000-0002-4001-6352 ; 0000-0001-5332-9561 ; 0000-0001-7478-6462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080136$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080136$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03678176$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Collinson, Glyn</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Lillis, Robert</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><title>Geophysical research letters</title><description>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude &lt;3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow. Plain Language Summary The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel. Key Points This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars Derived dayside electric fields are &lt;3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</description><subject>Alignment</subject><subject>ambipolar electric fields</subject><subject>Atmosphere</subject><subject>Atmospheric evolution</subject><subject>Charged particles</subject><subject>Composition</subject><subject>Electric field</subject><subject>Electric fields</subject><subject>Electromagnetic forces</subject><subject>Electrons</subject><subject>Escape velocity</subject><subject>Evolution</subject><subject>Forces (mechanics)</subject><subject>ion escape</subject><subject>Ions</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars missions</subject><subject>Mars spacecraft</subject><subject>Mathematical analysis</subject><subject>MAVEN</subject><subject>Neutral particles</subject><subject>Outflow</subject><subject>Particle physics</subject><subject>Photoelectrons</subject><subject>Planetary magnetic fields</subject><subject>Polar wind</subject><subject>Sciences of the Universe</subject><subject>Solar wind</subject><subject>Spacecraft</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Water outflow</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AUBeBBFKzVnQ8QcCdG72T-Mu5C6Y-QWhF1O0ySiU5JkzqTVrrzEXxGn8RIRFy5unfxcTgchE4xXGKI5FUEOJ6mEAMmfA8NsKQ0jAHEPhoAyO6PBD9ER94vAYAAwQN0PbGmKj7fP5LKPtemCO6a1tSt1ZUPdBvMtfPBxDWrYJ48jW-DReaN2-rWNrU_Rgdlx8zJzx2ix8n4YTQL08X0ZpSkYU4poyGXUBphMgZ5xCItY6PzIieMiYLLjFMshOY8LgglBeclzjmhVBYaWCZLbgoyROd97ouu1NrZlXY71WirZkmqbO03CggXMRZ8izt81uO1a143xrdq2Wxc3fVTEY64pFwQ1qmLXuWu8d6Z8jcXg_qeUv2dsuNRz99sZXb_WjW9T1kMnJIvgzhyig</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Xu, Shaosui</creator><creator>Mitchell, David L.</creator><creator>McFadden, James P.</creator><creator>Collinson, Glyn</creator><creator>Harada, Yuki</creator><creator>Lillis, Robert</creator><creator>Mazelle, Christian</creator><creator>Connerney, J. E. P.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0003-0578-517X</orcidid><orcidid>https://orcid.org/0000-0003-4883-9027</orcidid><orcidid>https://orcid.org/0000-0002-4001-6352</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><orcidid>https://orcid.org/0000-0001-7478-6462</orcidid></search><sort><creationdate>20181016</creationdate><title>Field‐Aligned Potentials at Mars From MAVEN Observations</title><author>Xu, Shaosui ; Mitchell, David L. ; McFadden, James P. ; Collinson, Glyn ; Harada, Yuki ; Lillis, Robert ; Mazelle, Christian ; Connerney, J. E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alignment</topic><topic>ambipolar electric fields</topic><topic>Atmosphere</topic><topic>Atmospheric evolution</topic><topic>Charged particles</topic><topic>Composition</topic><topic>Electric field</topic><topic>Electric fields</topic><topic>Electromagnetic forces</topic><topic>Electrons</topic><topic>Escape velocity</topic><topic>Evolution</topic><topic>Forces (mechanics)</topic><topic>ion escape</topic><topic>Ions</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars missions</topic><topic>Mars spacecraft</topic><topic>Mathematical analysis</topic><topic>MAVEN</topic><topic>Neutral particles</topic><topic>Outflow</topic><topic>Particle physics</topic><topic>Photoelectrons</topic><topic>Planetary magnetic fields</topic><topic>Polar wind</topic><topic>Sciences of the Universe</topic><topic>Solar wind</topic><topic>Spacecraft</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Water outflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaosui</creatorcontrib><creatorcontrib>Mitchell, David L.</creatorcontrib><creatorcontrib>McFadden, James P.</creatorcontrib><creatorcontrib>Collinson, Glyn</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Lillis, Robert</creatorcontrib><creatorcontrib>Mazelle, Christian</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shaosui</au><au>Mitchell, David L.</au><au>McFadden, James P.</au><au>Collinson, Glyn</au><au>Harada, Yuki</au><au>Lillis, Robert</au><au>Mazelle, Christian</au><au>Connerney, J. E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field‐Aligned Potentials at Mars From MAVEN Observations</atitle><jtitle>Geophysical research letters</jtitle><date>2018-10-16</date><risdate>2018</risdate><volume>45</volume><issue>19</issue><spage>10,119</spage><epage>10,127</epage><pages>10,119-10,127</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>One possible ion escape channel at Mars is a polar wind‐like outflow driven by parallel electric fields and/or other acceleration mechanisms. With independent potential estimates from ionospheric photoelectron measurements by the Solar Wind Electron Analyzer (SWEA) and ion measurements by the SupraThermal And Thermal Ion Composition (STATIC) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, magnetic field‐aligned potentials are calculated as the difference of the two. The calculated field‐aligned potentials have average values that range from 0 to −1.5 V, relative to the ionospheric source region. These field‐aligned potentials likely result from ambipolar electric fields and are found on both closed and open field lines. On the dayside, these potentials range from 0 to −0.7 V, corresponding to an electric field magnitude &lt;3 mV/km, which peaks near the ion exobase and can effectively accelerate ions and enhance ion outflow. Plain Language Summary The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedicated to studying atmospheric loss from Mars at the current epoch and estimating the total loss to space over Martian history. Atmospheric escape can be in the form of neutral particles and charged particles (i.e., ions and electrons). Charged particles subject to electromagnetic forces at Mars. Ions, more gravitationally bounded than electrons, can be accelerated to escape velocities by these forces. One of the accelerating forces for ions at Mars is in the form of ambipolar electric field, produced by electron‐ion separation. This study provides the first statistical analysis of amiboplar electric field at Mars with MAVEN data. Integrating this force over a spatial distance, the resulting potential, determined from MAVEN's measurements, ranges from 0 to −1.5 eV. These potentials can accelerate more ions to escape velocity and enhance ion escape. This study is cruel to characterize low‐energy ion escape, an important atmospheric loss channel. Key Points This study provides a statistical analysis of field‐aligned potentials at Mars, which we attribute to the ambipolar electric field The potential difference between the ionospheric source region and the spacecraft ranges from 0 to 1.5 V with E directing away from Mars Derived dayside electric fields are &lt;3 mV/km and located near the ion exobase, where they are most effective at enhancing ion outflow</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL080136</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5121-600X</orcidid><orcidid>https://orcid.org/0000-0001-9154-7236</orcidid><orcidid>https://orcid.org/0000-0003-0578-517X</orcidid><orcidid>https://orcid.org/0000-0003-4883-9027</orcidid><orcidid>https://orcid.org/0000-0002-4001-6352</orcidid><orcidid>https://orcid.org/0000-0001-5332-9561</orcidid><orcidid>https://orcid.org/0000-0001-7478-6462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2018-10, Vol.45 (19), p.10,119-10,127
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_insu_03678176v1
source Wiley-Blackwell AGU Digital Archive
subjects Alignment
ambipolar electric fields
Atmosphere
Atmospheric evolution
Charged particles
Composition
Electric field
Electric fields
Electromagnetic forces
Electrons
Escape velocity
Evolution
Forces (mechanics)
ion escape
Ions
Magnetic field
Magnetic fields
Mars
Mars atmosphere
Mars missions
Mars spacecraft
Mathematical analysis
MAVEN
Neutral particles
Outflow
Particle physics
Photoelectrons
Planetary magnetic fields
Polar wind
Sciences of the Universe
Solar wind
Spacecraft
Statistical analysis
Statistical methods
Water outflow
title Field‐Aligned Potentials at Mars From MAVEN Observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%E2%80%90Aligned%20Potentials%20at%20Mars%20From%20MAVEN%20Observations&rft.jtitle=Geophysical%20research%20letters&rft.au=Xu,%20Shaosui&rft.date=2018-10-16&rft.volume=45&rft.issue=19&rft.spage=10,119&rft.epage=10,127&rft.pages=10,119-10,127&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080136&rft_dat=%3Cproquest_hal_p%3E2126946735%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4454-690fe7eb50c252a98eacdc3557d69b64177a668d343d66f1c63449da05b9f6ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126946735&rft_id=info:pmid/&rfr_iscdi=true