Loading…

Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation

Molecular clouds are the cold regions of the Milky Way where stars form. They are enriched by rather complex molecules. Many of these molecules are believed to be synthesized on the icy surfaces of the interstellar submicron-sized dust grains that permeate the Galaxy. At 10 K thermal desorption is i...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2020-07, Vol.897 (1), p.56
Main Authors: Pantaleone, Stefano, Enrique-Romero, Joan, Ceccarelli, Cecilia, Ugliengo, Piero, Balucani, Nadia, Rimola, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3
cites cdi_FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3
container_end_page
container_issue 1
container_start_page 56
container_title The Astrophysical journal
container_volume 897
creator Pantaleone, Stefano
Enrique-Romero, Joan
Ceccarelli, Cecilia
Ugliengo, Piero
Balucani, Nadia
Rimola, Albert
description Molecular clouds are the cold regions of the Milky Way where stars form. They are enriched by rather complex molecules. Many of these molecules are believed to be synthesized on the icy surfaces of the interstellar submicron-sized dust grains that permeate the Galaxy. At 10 K thermal desorption is inefficient and, therefore, why these molecules are found in the cold gas has tantalized astronomers for years. The assumption of the current models, called chemical desorption, is that the molecule formation energy released by the chemical reactions at the grain surface is partially absorbed by the grain and the remaining energy causes the ejection of the newly formed molecules into the gas. Here we report accurate ab initio molecular dynamics simulations aimed at studying the fate of the energy released by the first reaction of the H addition chain to CO, H + CO HCO , occurring on a crystalline ice surface model. We show that about 90% of the HCO formation energy is injected toward the ice in the first picosecond, leaving HCO with an energy content (10-15 kJ mol−1) of less than half its binding energy (30 kJ mol−1). As a result, in agreement with laboratory experiments, we conclude that chemical desorption is inefficient for this specific system, namely H + CO on crystalline ice. We suspect this behavior to be quite general when dealing with hydrogen bonds, which are responsible for both the cohesive energy of the ice mantle and the interaction with adsorbates, as HCO , even though ad hoc simulations are needed to draw specific conclusions on other systems.
doi_str_mv 10.3847/1538-4357/ab8a4b
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03705197v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420791272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3</originalsourceid><addsrcrecordid>eNp1kMFr2zAUh8VoYWm7-46C7VTqRrIly-otOOkSyMhlg92EbD81Co7lSXEg_33lebSX7ST03vf7ePwQ-kzJY1YwMac8KxKWcTHXVaFZ9QHN3kZXaEYIYUmeiV8f0U0Ih_GbSjlDh3IPR1vrFi8hON-frOvwGXwYAl514F8ueGlDsL0eN0940wX7sj8FbLw74kUVBzZu8HfXQj202uPlpdPRGLAzeF3u8LPzxz_hO3RtdBvg09_3Fv18Xv0o18l2921TLrZJnUleJUxCDlIIzmvNOBMNFTXLCw7UGNNIlnMtqwaA8YYVIGuRG57KFBrIioIayG7R_eTd61b13h61vyinrVovtsp2YVAkE4RTKc40wl8muPfu9wDhpA5u8F28T6UsJULSVKSRIhNVexeCB_PmpUSN9auxazV2rab6Y-TrFLGuf3fq_qAKGXHFc9U3JmIP_8D-a30FpjiTYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420791272</pqid></control><display><type>article</type><title>Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation</title><source>EZB Free E-Journals</source><creator>Pantaleone, Stefano ; Enrique-Romero, Joan ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Rimola, Albert</creator><creatorcontrib>Pantaleone, Stefano ; Enrique-Romero, Joan ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Rimola, Albert</creatorcontrib><description>Molecular clouds are the cold regions of the Milky Way where stars form. They are enriched by rather complex molecules. Many of these molecules are believed to be synthesized on the icy surfaces of the interstellar submicron-sized dust grains that permeate the Galaxy. At 10 K thermal desorption is inefficient and, therefore, why these molecules are found in the cold gas has tantalized astronomers for years. The assumption of the current models, called chemical desorption, is that the molecule formation energy released by the chemical reactions at the grain surface is partially absorbed by the grain and the remaining energy causes the ejection of the newly formed molecules into the gas. Here we report accurate ab initio molecular dynamics simulations aimed at studying the fate of the energy released by the first reaction of the H addition chain to CO, H + CO HCO , occurring on a crystalline ice surface model. We show that about 90% of the HCO formation energy is injected toward the ice in the first picosecond, leaving HCO with an energy content (10-15 kJ mol−1) of less than half its binding energy (30 kJ mol−1). As a result, in agreement with laboratory experiments, we conclude that chemical desorption is inefficient for this specific system, namely H + CO on crystalline ice. We suspect this behavior to be quite general when dealing with hydrogen bonds, which are responsible for both the cohesive energy of the ice mantle and the interaction with adsorbates, as HCO , even though ad hoc simulations are needed to draw specific conclusions on other systems.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab8a4b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Adsorbates ; Astrochemistry ; Astrophysics ; Carbon monoxide ; Celestial bodies ; Chemical reactions ; Chemical synthesis ; Cloud formation ; Cold gas ; Cold regions ; Computer simulation ; Cosmic dust ; Crystal structure ; Crystallinity ; Desorption ; Energy ; Energy dissipation ; Energy of formation ; Free energy ; Galactic Astrophysics ; Galaxies ; Heat of formation ; Hydrogen ; Hydrogen bonds ; Ice ; Interstellar ; Interstellar dust processes ; Laboratory experiments ; Milky Way ; Molecular clouds ; Molecular dynamics ; Physics ; Pre-biotic astrochemistry ; Solid matter physics</subject><ispartof>The Astrophysical journal, 2020-07, Vol.897 (1), p.56</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jul 01, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3</citedby><cites>FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3</cites><orcidid>0000-0002-2147-7735 ; 0000-0002-2457-1065 ; 0000-0001-9664-6292 ; 0000-0001-5121-5683 ; 0000-0001-8886-9832 ; 0000-0002-9637-4554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03705197$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pantaleone, Stefano</creatorcontrib><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><title>Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Molecular clouds are the cold regions of the Milky Way where stars form. They are enriched by rather complex molecules. Many of these molecules are believed to be synthesized on the icy surfaces of the interstellar submicron-sized dust grains that permeate the Galaxy. At 10 K thermal desorption is inefficient and, therefore, why these molecules are found in the cold gas has tantalized astronomers for years. The assumption of the current models, called chemical desorption, is that the molecule formation energy released by the chemical reactions at the grain surface is partially absorbed by the grain and the remaining energy causes the ejection of the newly formed molecules into the gas. Here we report accurate ab initio molecular dynamics simulations aimed at studying the fate of the energy released by the first reaction of the H addition chain to CO, H + CO HCO , occurring on a crystalline ice surface model. We show that about 90% of the HCO formation energy is injected toward the ice in the first picosecond, leaving HCO with an energy content (10-15 kJ mol−1) of less than half its binding energy (30 kJ mol−1). As a result, in agreement with laboratory experiments, we conclude that chemical desorption is inefficient for this specific system, namely H + CO on crystalline ice. We suspect this behavior to be quite general when dealing with hydrogen bonds, which are responsible for both the cohesive energy of the ice mantle and the interaction with adsorbates, as HCO , even though ad hoc simulations are needed to draw specific conclusions on other systems.</description><subject>Adsorbates</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Carbon monoxide</subject><subject>Celestial bodies</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Cloud formation</subject><subject>Cold gas</subject><subject>Cold regions</subject><subject>Computer simulation</subject><subject>Cosmic dust</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Desorption</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Energy of formation</subject><subject>Free energy</subject><subject>Galactic Astrophysics</subject><subject>Galaxies</subject><subject>Heat of formation</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Ice</subject><subject>Interstellar</subject><subject>Interstellar dust processes</subject><subject>Laboratory experiments</subject><subject>Milky Way</subject><subject>Molecular clouds</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Pre-biotic astrochemistry</subject><subject>Solid matter physics</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFr2zAUh8VoYWm7-46C7VTqRrIly-otOOkSyMhlg92EbD81Co7lSXEg_33lebSX7ST03vf7ePwQ-kzJY1YwMac8KxKWcTHXVaFZ9QHN3kZXaEYIYUmeiV8f0U0Ih_GbSjlDh3IPR1vrFi8hON-frOvwGXwYAl514F8ueGlDsL0eN0940wX7sj8FbLw74kUVBzZu8HfXQj202uPlpdPRGLAzeF3u8LPzxz_hO3RtdBvg09_3Fv18Xv0o18l2921TLrZJnUleJUxCDlIIzmvNOBMNFTXLCw7UGNNIlnMtqwaA8YYVIGuRG57KFBrIioIayG7R_eTd61b13h61vyinrVovtsp2YVAkE4RTKc40wl8muPfu9wDhpA5u8F28T6UsJULSVKSRIhNVexeCB_PmpUSN9auxazV2rab6Y-TrFLGuf3fq_qAKGXHFc9U3JmIP_8D-a30FpjiTYQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Pantaleone, Stefano</creator><creator>Enrique-Romero, Joan</creator><creator>Ceccarelli, Cecilia</creator><creator>Ugliengo, Piero</creator><creator>Balucani, Nadia</creator><creator>Rimola, Albert</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0002-2457-1065</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid></search><sort><creationdate>20200701</creationdate><title>Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation</title><author>Pantaleone, Stefano ; Enrique-Romero, Joan ; Ceccarelli, Cecilia ; Ugliengo, Piero ; Balucani, Nadia ; Rimola, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbates</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Carbon monoxide</topic><topic>Celestial bodies</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Cloud formation</topic><topic>Cold gas</topic><topic>Cold regions</topic><topic>Computer simulation</topic><topic>Cosmic dust</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Desorption</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Energy of formation</topic><topic>Free energy</topic><topic>Galactic Astrophysics</topic><topic>Galaxies</topic><topic>Heat of formation</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Ice</topic><topic>Interstellar</topic><topic>Interstellar dust processes</topic><topic>Laboratory experiments</topic><topic>Milky Way</topic><topic>Molecular clouds</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Pre-biotic astrochemistry</topic><topic>Solid matter physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pantaleone, Stefano</creatorcontrib><creatorcontrib>Enrique-Romero, Joan</creatorcontrib><creatorcontrib>Ceccarelli, Cecilia</creatorcontrib><creatorcontrib>Ugliengo, Piero</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Rimola, Albert</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pantaleone, Stefano</au><au>Enrique-Romero, Joan</au><au>Ceccarelli, Cecilia</au><au>Ugliengo, Piero</au><au>Balucani, Nadia</au><au>Rimola, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>897</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Molecular clouds are the cold regions of the Milky Way where stars form. They are enriched by rather complex molecules. Many of these molecules are believed to be synthesized on the icy surfaces of the interstellar submicron-sized dust grains that permeate the Galaxy. At 10 K thermal desorption is inefficient and, therefore, why these molecules are found in the cold gas has tantalized astronomers for years. The assumption of the current models, called chemical desorption, is that the molecule formation energy released by the chemical reactions at the grain surface is partially absorbed by the grain and the remaining energy causes the ejection of the newly formed molecules into the gas. Here we report accurate ab initio molecular dynamics simulations aimed at studying the fate of the energy released by the first reaction of the H addition chain to CO, H + CO HCO , occurring on a crystalline ice surface model. We show that about 90% of the HCO formation energy is injected toward the ice in the first picosecond, leaving HCO with an energy content (10-15 kJ mol−1) of less than half its binding energy (30 kJ mol−1). As a result, in agreement with laboratory experiments, we conclude that chemical desorption is inefficient for this specific system, namely H + CO on crystalline ice. We suspect this behavior to be quite general when dealing with hydrogen bonds, which are responsible for both the cohesive energy of the ice mantle and the interaction with adsorbates, as HCO , even though ad hoc simulations are needed to draw specific conclusions on other systems.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab8a4b</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2147-7735</orcidid><orcidid>https://orcid.org/0000-0002-2457-1065</orcidid><orcidid>https://orcid.org/0000-0001-9664-6292</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-8886-9832</orcidid><orcidid>https://orcid.org/0000-0002-9637-4554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-07, Vol.897 (1), p.56
issn 0004-637X
1538-4357
language eng
recordid cdi_hal_primary_oai_HAL_insu_03705197v1
source EZB Free E-Journals
subjects Adsorbates
Astrochemistry
Astrophysics
Carbon monoxide
Celestial bodies
Chemical reactions
Chemical synthesis
Cloud formation
Cold gas
Cold regions
Computer simulation
Cosmic dust
Crystal structure
Crystallinity
Desorption
Energy
Energy dissipation
Energy of formation
Free energy
Galactic Astrophysics
Galaxies
Heat of formation
Hydrogen
Hydrogen bonds
Ice
Interstellar
Interstellar dust processes
Laboratory experiments
Milky Way
Molecular clouds
Molecular dynamics
Physics
Pre-biotic astrochemistry
Solid matter physics
title Chemical Desorption versus Energy Dissipation: Insights from Ab Initio Molecular Dynamics of HCO Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Desorption%20versus%20Energy%20Dissipation:%20Insights%20from%20Ab%20Initio%20Molecular%20Dynamics%20of%20HCO%20Formation&rft.jtitle=The%20Astrophysical%20journal&rft.au=Pantaleone,%20Stefano&rft.date=2020-07-01&rft.volume=897&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab8a4b&rft_dat=%3Cproquest_hal_p%3E2420791272%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395b-49e6e97755ca4547d17c4685e1fffd9465a9bdee45d48e9c76f5292ede3881fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420791272&rft_id=info:pmid/&rfr_iscdi=true