Loading…
GW Ori: circumtriple rings and planets
ABSTRACT GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at $100\, \rm au$ and misalignments between each of the rings. A break in th...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2021-11, Vol.508 (1), p.392-407 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at $100\, \rm au$ and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and 3D hydrodynamic simulations. We find that for observationally motivated parameters of protoplanetary discs, the disc does not break due to the torque from the star system. We suggest that the presence of a massive planet (or planets) in the disc separates the inner and outer discs. We conclude that the disc breaking in GW Ori is likely caused by undetected planets – the first planet(s) in a circumtriple orbit. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab2624 |